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Abstract 

In order to make the most cost-effective choice when purchasing high-value 

assets, organizations must be able to quantify and compare the costs associated with 

acquiring, maintaining and disposing the alternatives. Currently, the United States Air 

Force (USAF) Civil Engineer (CE) enterprise has no standardized model to accurately and 

efficiently predict the total cost of ownership (TCO) for the acquisition of new assets. As 

such, acquisition efforts throughout the enterprise are disjointed and performed 

without leveraging the considerable buying power wielded by an organization as large 

as the USAF. This research developed a TCO model using a standard, dollar-based 

approach that combined linear additive and regression modeling techniques. The model 

was derived from existing operations and maintenance and contract spending data 

associated with heating, ventilation, and air conditioning. The TCO model provides USAF 

acquisition, contracting, and civil engineering professionals a tool with which to project 

life-cycle costs, negotiate prices, and justify spending decisions. Furthermore, the model 

provides a proof of concept to the CE enterprise that will allow for the expansion of TCO 

modeling to other categories of spending. 
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I.  Introduction 

Background 

The cost to own and operate the average United States (US) federal government 

acquisition program has  been growing at a rate greater than inflation over the past 

decade (U.S. Department of the Navy, 2014). Despite increasing budgets, especially in 

defense, federal agencies have less fieldable resources than planned due to program 

cost overruns (FY04 – 10 Presidential Budget). These escalating costs for programs that 

fail to meet delivery quotas are a direct result of disjointed acquisition management, 

inability to capture total program costs, and lack of communication (Rung, 2014). For 

example, in 2014 there were more than 3,300 distinct contracting units under the major 

federal contracting agencies managing $428B--12% of the 2014 federal budget across 

the US federal government (OMB, 2015). These units work mostly by funneling 

information upward to their parent agencies, with only occasional collaboration across 

organizations and little sharing of information and best practices. This degree of 

fragmentation and lack of coordination drives costly redundancies and inefficiencies in 

procurement actions, contracting vehicles, and overall acquisition efforts (Dodaro, 

2015). In addition to duplication and unnecessary complexity, there is also a failure to 

leverage institutional knowledge held by thousands of acquisition professionals (OMB, 

2015). The continual decrease of acquisition personnel, loss of subject matter expertise, 

and gaps in data/information transfer will only exacerbate these inefficiencies and drive 

costs higher. All of these issues are tied together by the underlying fact that accounting 
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for the total cost paid by the federal government for any given acquisition is not done 

properly (GAO, 2016). Without understanding the true cost of ownership for the assets 

purchased by the government, reducing those costs is impossible.  

In May 2005, the Office of Management and Budget (OMB), Office of Federal 

Procurement Policy (OFPP) released a memorandum for all federal government agency 

Chief Acquisition, Financial, and Information Officers announcing strategic sourcing as a 

requirement for all federal agencies (Johnson, 2005). While guidance from OFPP 

required strategic sourcing within all federal agencies, systematic and collaborative 

approaches across all government agencies was needed. As a result, the Department of 

the Treasury and General Services Administration (GSA), with support from OFPP, 

partnered to launch the Federal Strategic Sourcing Initiative (FSSI) in November of 2005, 

inviting all Federal agencies to participate and work together to address OMB’s 

requirement of buying better. With additional OMB guidance in December 2012 (Zients, 

2012), the Strategic Sourcing Leadership Council (since renamed the Category 

Management Leadership Council - CMLC) was established and Strategic Sourcing 

Accountable Officials were assigned to help agencies optimize performance, minimize 

price, and increase the value of each dollar spent. As a result of the FSSI and support of 

the CMLC, the federal government has awarded nine sourcing solutions generating over 

$439 million in savings from 2010 – 2014 (OMB, 2015). This new, coordinated effort is 

called category management.  
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While the category management effort is federal government-wide, the United 

States Air Force (USAF) has taken the lead in implementation. While the categories of 

spending which category management covers are broad (OMB, 2015), this research will 

focus on the specific category of facilities and construction spending within the USAF as 

a proof of concept. Efforts to implement a category management model across the 

USAF are ongoing; however, there are no service-wide standardized cost models 

available to provide decision makers with the cost information they need to implement 

category management practices (Brannon et al., 2018). Without knowing the total cost 

over the lifespan of an asset, optimal purchasing decisions cannot be made because the 

majority of an asset’s total cost of ownership (TCO) comes after the initial purchase 

(Uddin et al., 2013). The facilities and construction category of government spending is 

the largest portion of any category, representing 17.7% of contracted spending in FY14 

(GSA, 2017a). Facilities and construction acquisitions are not immune to the 

government-wide inability to model TCO. The USAF specifically owns, operates and 

maintains thousands of Real Property Installed Equipment (RPIE) systems that are vital 

to USAF facility function (AFCEC/CIT, 2017). These facilities support everything from the 

control of the runway operation to intrusion and fire detection. At the most basic level, 

properly functioning facility systems allow for comfortable, productive work 

environments that can account for millions of dollars in lost work-hours if neglected 

(Bluyssen, 2012). Failure of any one system at one of these key facilities may lead to 

failure of the mission itself; such failures warrant an examination of these support 
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systems as an extension of the weapons systems they enable and treatment of their 

acquisition with proportionate consideration. 

Facility systems are composed of a variety of types and components that are 

designed to work in concert to control the interior and exterior environment of the 

facility. In the USAF, these facility systems are purchased and maintained by the Civil 

Engineering (CE) career field as individual items (Brannon et al., 2018). Category 

Management is a framework that allows an opportunity to consider these systems on all 

installations/bases as one “larger system” with the goal of gaining efficiencies in cost, 

performance, and resilience (OMB, 2015). Large cost reduction opportunities are found 

when the focus broadens from only the initial procurement of the system(s) and 

expands to consider the maintenance and repair cost of systems as well. Proper 

maintenance and repair minimizes system downtime (increasing uptime and reliability) 

resulting in life-cycle cost efficiencies (Steenhuizen et al., 2014). Because of the low up-

front cost (relative to the facility to which they are attached) and infrequent nature of 

purchasing most systems, a lowest price technically acceptable (LPTA) acquisition 

analysis is generally used when choosing most facilities equipment (DiNapoli et al., 

2014). Often times life cycle or TCO analysis is only completed as a part of new facility 

construction or renovation of existing structures where only the total package is 

analyzed (Brannon et al., 2018). Limited manpower is often used as justification for 

using LPTA for the acquisition of relatively low-priced assets. It takes a great deal of time 

and effort to accurately map the TCO for a given system (DiNapoli et al., 2014). 
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Additionally, the Federal Acquisition Regulation (FAR) has specific rules on when 

contracting officers are allowed to use non-LPTA acquisition, referred to as the trade-off 

process (“Federal Acquisition Regulation, 48 C.F.R. § 15.101-1,” 2014). Without the 

ability to quickly provide total cost analysis that meets FAR requirements, LPTA will 

remain the main contract vehicle for acquisition despite the potential for paying much 

higher TCO over an asset’s service.  

Research Focus 

The purpose of this research is to develop a TCO model for facilities and 

construction equipment. A proof of concept model will be developed using USAF-wide 

data on the largest subset of the facilities and construction category – heating, 

ventilation, and air conditioning (HVAC) air chillers (Brannon et al., 2018). Focusing on 

the largest sub-category of the facilities and construction category provides an 

opportunity for more cost savings as well as access to a large set of historical data based 

on USAF maintenance and purchasing records. By providing a practical TCO model that 

can be standardized and implemented enterprise-wide, stakeholders in the acquisition 

and deployment of facility and construction assets will gain clarity on how their 

decisions affect the life-cycle costs of HVAC systems. The increased clarity will inform 

decisions that save money for the Air Force while providing tangible justification for 

those decisions. This research will: 

1. Develop a TCO model for air chiller systems that statistically defensible if 

legally challenged; and 
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2. Develop a TCO model that reduces the time requirement of tradeoff analysis 

so that the manpower cost of analysis is negligible compared to simpler 

methods. 
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II. Literature Review 

Introduction 

This chapter contains a literature review of the work done in the fields relevant 

to the research statement presented previously. This chapter summarizes and organizes 

the reviewed literature in four main sections: (1) the principles of category management 

that are applicable to this research; (2) the concept of using spend under management 

as a tool for successful category management; (3) a description of the facilities and 

construction category of United States (US) government spending; and (4)  a review of 

total cost of ownership (TCO) modeling as well as the gaps in existing work that this 

research will fill. 

Category Management 

Category management is a retailing and purchasing concept in which the range 

of products purchased by a business organization or sold by a retailer is broken down 

into discrete groups of similar or related products known as product categories. 

Category management is a systematic, disciplined approach to managing a product 

category as a strategic business unit (NACS, 2018). While the process of category 

management has been well documented and refined (Blattberg et al., 1995; Blattberg & 

Deighton, 1996; Gruen, 1998; Paydos & Conti, 1997), there has been little systematic 

research on the elements that impact category management performance. McLaughlin 

and Hawkes (1994) reported what was perhaps the first major survey of category 

management practices through the study of 60 leading supermarket retailers and 26 
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wholesalers concerning the current status and future prospects for category 

management. Their work shows that both retailers and wholesalers face formidable 

constraints which are impeding more rapid integration of category management. The 

most common constraint is data management; most companies have too much data, 

too little information in easily accessible forms, a lack of trained personnel to interpret 

data to make informed category management decisions.  While the literature on 

category management is consistent when discussing the constraints involved (Gruen, 

1998; Gruen & Shah, 2000; Lindblom et al., 2009; McLaughlin & Hawkes, 1994), there is 

also an agreement on the benefits of category management. Research has shown that 

the effect of one of the common outcomes of category management, unique reduction 

of available products (within limits), led to increases in consumer satisfaction 

(Broniarczyk et al., 1998). Additionally, implementing category management has been 

found to improve manufacturer/supplier/customer relations, streamline inventory 

management, and improve profits through reduced costs (Gruen & Shah, 2000). 

The relationship of retailer and manufacturer is not a perfect description of the 

category management framework the US federal government wishes to implement. It 

does, however, provide guiding theories that may be adapted to achieve success. From 

a federal government stand point, category management is an approach based on 

industry leading practices that streamline and manage entire categories of spending 

across government more like a single enterprise (Rung, 2014).  This approach to 

category management includes strategic sourcing, but also includes a broader set of 

strategies, such as developing common standards and improving data 
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analysis/information sharing to leverage the government’s buying power and reduce 

contract duplication (GAO, 2016).  

Gruen and Shah (2000) provide four primary and three secondary findings that 

must be considered in order to achieve successful category management. First, 

objectivity of the category plan is of critical importance to the long-term success of the 

supplier-retailer relationship, and to the performance of the category. Second, in 

category management situations within supplier companies, brand management 

pressure on the customer business development (CBD) team – although not as 

important as plan objectivity – is an important consideration for category management 

teams. Third, suppliers revealed a wide array of self-serving tactics when developing 

category plans that would be difficult for the retailer to monitor. Fourth, every retailer 

has difficulty fully implementing category plans, and this is a major challenge to 

manufacturers and retailers alike. The three secondary factors likely to impact the 

objectivity and implementation of category plans include suppliers’ resource 

commitment to category management, the amount of joint pre-planning by the supplier 

and retailer, and the retailers’ experience-based trust in the category management 

system (Gruen & Shah, 2000).  

One of the most consistent and compelling findings from the literature is the 

importance of category management plan objectivity (Blattberg & Deighton, 1996; 

Gruen & Shah, 2000). In category management, the plan must fully consider the 

available data, such that the plan offers the optimal assortment of choices and pricing. 

For example, in the study of factors that affect the internal resistance to marketing plan 
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acceptance, objectivity of a marketing plan (based on the logic of the plan) was 

considered to be one of the critical characteristics that determined the degree of plan 

implementation (Silverman, 1996). In category management, development of the plan is 

only one half of the picture: the plans must be put into effect. Implementation refers to 

the actual carrying out of category plans on the retailers’ shelves. Generally, at the 

minimum it involves the rearrangement, addition, and deletion of products, brands, and 

stock keeping units (SKUs). Retailers often rely on the manufacturers’ CBD teams to 

provide the labor to reset the shelves. Generally, manufacturers and suppliers do 

nothing more than deliver the products in question while contractors or government 

personnel handling stocking, arranging, and managing inventory. As such, the generally 

high cost of implementing category management plans on the manufacturing/supply 

side (Gruen & Shah, 2000) will be much less for government applications (pending 

special requirements the government may have).  Consistent with the literature in 

strategic management, the key to formal planning effectiveness is the actual 

implementation of that planning (Camillus, 2015). Exploratory interviews revealed that 

the implementation of category management plans vary greatly, and it is the top 

concern in category management for many companies. The manufacturers find it 

frustrating to learn that the time and money resources allocated to developing a 

category plan get wasted through improper and/or incomplete implementation. 

Although the degree of implementation is a function of various inputs, both suppliers 

and retailers mentioned that objective plans were critical for achieving the necessary 

buy-in from both the retailers and competing suppliers in the category. Because of the 
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high focus that the literature places on objectivity, focusing on the accuracy and 

objectively quantifying how much the federal government spends within each category 

and then bringing that spending under active management is a pivotal requirement to 

successful category management within the federal government. While the steps 

toward proper implementation require considerable time and resources, when done 

properly category performance will improve and the parties involved will realize all of 

the positive of category management (Camillus, 2015; Gruen & Shah, 2000). 

The relationship of retailer and manufacturer is not a perfect description of the 

category management framework the US federal government wishes to implement. It 

does, however, provide guiding theories that may be adapted to achieve success. From 

a federal government stand point, category management is an approach based on 

industry leading practices that streamline and manage entire categories of spending 

across government more like a single enterprise (Rung, 2014).  This approach to 

category management includes strategic sourcing, but also includes a broader set of 

strategies, such as developing common standards and improving data 

analysis/information sharing to leverage the government’s buying power and reduce 

contract duplication (GAO, 2016). Under the category management initiative, federal 

procurement spending is organized into 10 common categories such as information 

technology (IT), travel, and construction, which, according to Office of Federal 

Procurement Policy (OFPP), altogether accounted for $275 billion in fiscal year 2014 

federal spending (OMB, 2015). When applying category management to the 

government for research purposes, one can think of the government as the retailer 
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while suppliers and manufacturers can be treated the same as in private industry 

category management. While the body of literature on the topic of category 

management lays out the objectives, benefits, challenges, and requirements associated 

with successful category management, it does so with a focus on private business 

(mostly in the retail sector). As such, the principles presented are not perfectly 

applicable to organizations such as the United States federal government who do not 

serve traditional customers with traditional products. Despite the imperfect analogy of 

manufacturer/supplier and customer, the concept of systematically and objectively 

managing purchases based on categories is applicable to the federal government. While 

this research does not seek to identify the path to successful category management 

within the federal government, it will provide a means of objectively quantifying 

purchasing decisions in order to achieve the objectivity that is crucial to success. 

Spend Under Management 

 Spend under management (SUM) is the percentage of an organization’s spend 

that is actively managed according to category management principles (Zeiger, 2017). 

Increasing SUM will eliminate redundancies, increase efficiency, and deliver more value 

and savings (GSA, 2018a). SUM is a model designed to assess agency and government-

wide category management maturity, and to highlight successes as well as development 

areas across all categories and federal agencies (GAO, 2016). Within the context of the 

government-wide category management initiative, OMB defines SUM as spend on 
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contracts that meet defined criteria for management and data-sharing maturity. OMB 

uses the following tiered rating scale to evaluate agency spend (GSA, 2017b):  

• Tier 3, Best-in-Class (BIC) Solutions – Dollars obligated on BIC contracts. 

• Tier 2, Multi-Agency Solutions – Dollars obligated on multi-agency contracts that 

satisfy rigorous standards set for leadership, strategy, data, tools, and metrics. 

• Tier 1, Mandatory-Use Agency-Wide Solutions – Dollars obligated on agency-

wide contracts with mandatory use or mandatory-consideration policies, along 

with standards set for data-sharing and other criteria. 

• Tier 0, Spend NOT Aligned to Category Management Principals – Dollars 

obligated on contracts that do not fit into one of the three tiers above. Agencies 

should analyze Tier 0 spend to find opportunities for shifting to higher-tier 

solutions. 

 Using vetted, approved buying channels like BIC solutions helps bring more of 

the government’s SUM. As agencies work to increase SUM, the government will build 

more robust government-wide buying data, that will result in keener insights on buying 

behaviors and ultimately result in better means of improving the way the government 

buys common goods and services. 

 Under category management, the federal government  has established targets 

for SUM BIC solutions (GAO, 2016). As such, agency progress toward implementing 

category management should be tracked and measured. The most current category 

management governance document (OMB, 2015) indicates that SUM will be used as the 
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principal measure by which OMB will assess adoption of category management. Because 

of the effectiveness of using SUM as a performance evaluation tool, OMB will evaluate 

SUM results, that includes agency adoption of BIC solutions and then review with 

agency leaders progress toward meeting goals.  

 Adopting SUM guidelines gets the federal government one step further to 

achieving success in objectively quantifying spending. However, there is no application 

in literature of applying SUM within an organization similar to the US federal 

government. Furthermore, adopting a SUM framework within category management is 

not effective without a means of accurately identifying costs. As such, one can see how 

the gap in existing literature perpetuates the need for a well-defined total cost of 

ownership model when examining SUM. 

Facilities and Construction Spending 

The facilities and construction category of OMB category management initiative 

represents one of the ten major categories of spending targeted. Consisting of $77.2B 

out of the $275B (28%) in spending in fiscal year (FY) 2014 (GSA, 2016), the facilities and 

construction sub-categories include construction-related materials and services, facility-

related materials and services, and facilities purchase and leasing activities. The 
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breakdown of these sub-categories into functional groupings provides an in-depth 

breakdown of the spending and is shown below in Figure 1. 

 

Figure 1 - FY 2014 Facilities and Construction Spending adopted from (GSA, 2016) 
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Figure 2 - Functional Grouping Size Comparison (GSA, 2016) 

Furthermore, one can see the breakdown of functional group sizing in Figure 2. 

This sub-category comparison provides a visual means showing the impact of each sub-

category as a means of potential targeting for cost savings. In order to manage the 

facilities and construction category of spending, the United States General Services 

Agency (GSA) has implemented the Building Maintenance and Operations (BMO) 

strategic sourcing solution is a comprehensive and flexible solution covering all high-

demand BMO services. BMO is an open-market, multiple-award, indefinite delivery, 

indefinite quantity (MA-IDIQ), governmentwide contract vehicle supporting the strategic 

sourcing initiative to reduce costs and drive efficient purchasing by federal agencies 

(GSA, 2018b). BMO falls under the BIC Acquisition Solutions mandated by OMB. These 

BIC solutions are vetted, well-managed, and recommended (and in some cases required) 
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for use (GSA, 2018a). The overall goal of BIC solutions is to bring more spending under 

management in order to build better government-wide purchasing data that can be 

analyzed to improve the way the government buys common goods and services. BIC 

solutions are characterized by five requirements that must be met before 

implementation (GSA, 2017a): (1) rigorous requirements definitions and planning 

processes, (2) appropriate pricing strategies, (3) data-driven demand management 

strategies, (4) category and performance management practices, and (5) independent 

validation and reviews by category teams. The scope of BMO spans many areas of 

expertise and includes the primary services required to provide a total solution to 

maintain and operate federal buildings and assets. All awarded contractors are required 

to offer a certain set of services and some may offer optional services as well. BMO is 

setup to allow agencies the flexibility of purchasing services all-inclusive or individually. 

The BMO solution will use a zonal approach, creating reasonably sized regions in which 

small businesses can realistically compete and operate in order to promote small 

business participation. The BMO vehicle is a 10-year contract with one 5-year base and 

one 5-year option at the parent contract level. Agencies seeking longer than a 5-year 

task order (1-year base period and four 1-year options) must request a deviation from 

their own agency. By implementing BMO to manage the facilities and construction 

spending category, OMB is working to get customers and industry involved in upfront 

planning and requirements definition to create a vehicle that generates the best value 

and meets socioeconomic goals, tracks/analyzes/shares data, then monitors and shares 

vendor and solution performance with continuous feedback loop from customers and 
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contractors (GSA, 2017a). As BMO (and other BIC) solutions come online, OMB hopes 

that top solutions will spread while inferior strategies fall to the wayside as acquisition 

experts in other agencies gain confidence to begin tapping into the vehicles while paving 

the way for first-time users to begin utilizing high-value acquisition tools. 

Total Cost of Ownership 

Total cost of ownership (TCO) is defined most simply as the total cost of any 

good or service from acquisition to demolition or disposal (Saccani et al., 2017). Defining 

everything that falls within the span of a good’s lifetime is much more complex. In 

addition to the capital costs of acquisition, TCO may include, but is not limited to, such 

elements as order placement, research and qualification of suppliers, transportation, 

receiving, inspection, rejection, maintenance, replacement, downtime caused by failure, 

and disposal costs. These cost elements may be unique by item or type of purchase 

(Ellram, 2005). Before 1980, most American firms would define TCO as the bottom line 

of a supply contract and the most common criterion for selecting suppliers was to 

choose the lowest bidder—thus a  desire for low cost took precedence over quality 

(Ellram & Siferd, 1993). Acceptance of a relatively high defect rate was accompanied by 

a willingness to carry extra inventory which led to overly tasked inventory managers, 

expediters, and inspectors (Ellram & Siferd, 1993). Suppliers were pitted against each 

other since the threat of losing a contract to a competitor was thought to be the best 

way to "keep a supplier in line” (Leenders et al., 1980). In the early 1980s, attitudes 

began a shift that resulted in American firms adopting TCO en masse (Ellram & Siferd, 
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1993) as a key underpinning to the practice of strategic sourcing (Anderson & Katz, 

1998). 

The use of TCO analysis is preferred to life-cycle cost analysis (LCCA) as the latter 

focuses primarily on capital or fixed assets (Fernandez, 1990; Jackson & Ostrom, 1980). 

The emphasis is understanding the purchase price of the asset and also on determining 

how much it actually costs the organization to use, maintain and dispose of that asset 

during its lifetime. Since pre-transaction costs tend to be de-emphasized under LCCA, 

LCCA is congruent with TCO but represents only a subset of TCO activity. TCO is broader 

in scope and includes the pre-purchase costs associated with a particular supplier. Zero-

base pricing (Burt et al., 1990) and cost-based supplier performance evaluation 

(Monckza & Trecha, 1988) both advocate understanding suppliers’ total costs. 

Traditional approaches to supplier selection and ongoing evaluation include selecting 

and retaining a supplier based on price  or qualitatively evaluating the supplier’s 

performance using categorical or weighted point/matrix approaches (NAPM, 1991). 

While the latter approaches are preferred to a “price only” focus, they tend to de-

emphasize the costs associated with all aspects of a supplier’s performance and 

generally disregard internal costs. Examination of such costs is a strength of the TCO 

approach (Soukup, 1987). Thus, the use of TCO modeling is superior to LCCA for 

organizations trying to build supplier relations, leverage high volume spending, and 

negotiate contracts based on an in-depth understanding of supplier pricing (Ellram, 

2005). 
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In contrast to TCO, zero-base pricing focuses heavily on understanding the 

supplier’s pricing structure and the supplier’s cost of doing business. Cost-based supplier 

performance evaluation has a narrower scope than TCO by focusing primarily on the 

external costs of doing business with a supplier rather than on both the internal and 

external costs, as does TCO (Ellram, 2005). From a theoretical standpoint, economists 

have discussed the importance of going beyond price to encompass transaction cost 

analysis in purchasing from external sources when considering TCO. Economists have 

viewed transaction cost analysis primarily from a make-or-buy perspective—i.e., 

considering internal production of goods or services versus buying in the market (Coase, 

1937; Walker, 1988; Williamson, 1985).  

Turning to applications of transaction cost analysis in the marketing literature, 

Heide (1994) notes that transaction specific investments may involve human assets that 

are difficult/costly to replace. In terms of purchasing, this could include suppliers’ 

employees, such as engineers, account executives, and customer service personnel who 

have specialized knowledge and are dedicated to making the account run smoothly. For 

example, a supplier’s concurrent engineering and after-sales support may significantly 

lower the buying organization’s cost of doing business with this supplier versus the free 

market. In dealing with external uncertainty, which creates an environment conducive 

to opportunistic behavior, the marketing literature notes that opportunism is decreased 

when there is an interpenetration of organizational boundaries (Heide & John, 1990).  

Heide and John (1990) also found organizational interpenetration was relevant to the 
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TCO of buyer-supplier relationships. These costs include dedicating assets such as key 

account personnel. Likewise, Heide and John (1990) found that there should be a 

reduction in transaction costs from creating such close relationships. Examples of this 

include a reduction in the costs of soliciting/evaluating proposals from numerous 

suppliers as well as time spent searching for and evaluating potential new suppliers. 

Previous literature on TCO analysis defined transaction costs based on: costs that are 

incurred prior to actual sale; costs associated with the sale--e.g., price; and costs after 

the sale has occurred--e.g., disposal (Ellram, 1993). Such cost considerations are 

supported by the marketing literature’s application of transaction cost analysis to 

specific assets and opportunism. TCO analysis is a valuable tool and philosophy to 

support the application of the theory of transaction cost analysis to buyer-seller 

relationships. 

TCO Barriers and Benefits 

The complexity of TCO may limit its widespread adoption. Lack of readily 

available accounting and costing data in many organizations is a major barrier. This 

situation has the potential to change as more organizations implement activity-based 

costing (Ellram, 1994a; Kaplan, 1992; Roehm et al., 1992). However, this change has 

been very slow in coming. Another complicating factor is that there is no standard 

approach to TCO analysis. Research and a review of the literature have indicated that 

TCO models used vary widely by company and may even vary within companies 

depending on the buy class and/or item purchased (Burt et al., 1990; Ellram, 1993; 
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Ellram & Siferd, 1993; Fernandez, 1990; Henry & Elfant, 1988). Thus, user training and 

education are needed to support TCO efforts. Further, TCO adoption may require a 

cultural change away from a price orientation in procurement and towards total cost 

understanding (Ellram, 1993; Ellram & Siferd, 1993). That potential for cultural change is 

a major reason why TCO is regarded as a philosophy rather than as merely a tool. An 

additional factor which complicates TCO is that TCO costs are often situation-specific. 

The costs which are significant and relevant to decision making vary based on many 

factors – such as the nature, magnitude and importance of the buy (Ellram, 1994a; 

Schmenner & others, 1992). 

However, TCO provides many benefits that are documented in the literature 

(Burt et al., 1990; Ellram, 2005; Ellram & Siferd, 1993; Monckza & Trecha, 1988; Saccani 

et al., 2017) and confirmed by case study analysis (Ellram, 1994b, 2005; Fuller, 2016; 

Naguib, 2009). Some of the primary benefits of adopting a TCO approach are that TCO 

analysis: 

• provides a consistent supplier evaluation tool that improves the value of supplier 

performance comparisons among suppliers and over time; 

• helps clarify and define supplier performance expectations both in the firm and 

for the supplier; 

• provides a focus and sets priorities regarding the areas in which supplier 

performance would be most beneficial creating major opportunities for cost 

savings--this supports continuous improvement 
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• improves the purchaser’s understanding of supplier performance issues and cost 

structure; 

• provides excellent data for negotiations; 

• provides an opportunity to justify higher initial prices based on better 

quality/lower total costs in the long run and; 

• provides a long-term purchasing orientation by emphasizing the TCO rather than 

just price. 

This list of benefits provides a summary of some of the key benefits of adopting a 

TCO philosophy in purchasing. It is important to note that use of TCO is reserved for 

certain items/services where the organization feels that such analysis can provide the 

greatest benefit (Ellram, 2005).  

Dollar-based Versus Value-based TCO Models 

According to Ellram (2005), a dollar-based TCO model is one that relies on 

gathering or allocating actual cost data for each of the relevant TCO elements. For 

instance, if a dollar-based model indicated a TCO for a component, it would be possible 

to trace then every cost that makes up that TCO on a cost element-by-cost element 

basis. While determining which cost elements to include and gathering the data to 

determine the TCO may be complicated, explaining the results of a dollar-based 

approach is relatively straightforward. Ellram (2005) contrasts the dollar-based 

approach with value-based TCO models that combines cost/dollar data with other 



www.manaraa.com

 

24 

performance data that are often difficult to “dollarize”. These models tend to become 

rather complex, as qualitative data are transformed to quantitative data. They often 

require very lengthy explanations of each cost category. The total cost derived from 

value-based models is not directly traceable to dollars spent in the past, spent currently 

or estimated to be spent in the future, as are the dollar-based TCO results. However, the 

way in which the supplier’s performance is scored within categories and points allocated 

among categories reflects the buying organization’s estimate of the cost of various 

performance discrepancies. Organizations which choose a value-based approach prefer 

it because as costs and the organization’s priorities change, the “weighting” of cost 

factors can be changed accordingly. Value based models require a great deal of fine 

tuning and effort to develop the proper weightings and point allocations so that they 

reflect the TCO. Like dollar-based TCO analysis, value-based models are derived from 

historical data and/or estimates of future costs. Value-based models tend to focus on a 

small number of major cost issues, generally around three or four. Calculations beyond 

this point tend to become too complex. 

Unique Versus Standard TCO Models 

The organizations studied tended to use unique models that are specially 

developed for each buy. These models may share a common set of total cost factors, 

such as quality, delivery and service while the relevant data need to be developed 

separately for each buy. Organizations chose to use a unique versus a standard type of 

model for a number of reasons. Figure 3 provides an overall summary of the relative 
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advantages of the different TCO models while Figure 4 provides an overview of the 

appropriate application of each model. 

 

Figure 3 - Comparison of TCO models adopted from (Ellram, 2005) 
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Figure 4 - Primary uses of various types of models adopted from (Ellram, 2005) 

Modeling TCO for Chiller Assets 

While the concepts of assigning the TCO are well documented in literature, the 

techniques are generally limited to the company-level scale and not focused on a certain 

class of assets (Ellram, 2005). As such, the development of a practical TCO model for 

individual asset types is missing from the literature at large. Case studies of TCO models 

employed by certain organizations are the norm in TCO literature since developing a 

“one size fits all” TCO model is not feasible (Ellram, 2005). Theoretically, developing an 

asset specific TCO model for an owned asset is simple – all costs associated with the life-

cycle of that asset are accounted for and totaled (Ellram, 1993). Once the TCO for an 

asset or alternative assets is determined, informed decisions can be made as long as the 

TCO is complete and expressed in equivalent terms (Eschenbach, 2011). If all costs are 
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known, TCO analysis is straightforward. Forecasting the TCO over the lifespan of an 

asset when some costs must be assumed is more difficult (Fuller, 2016).  

While there is chiller specific literature on forecasting unknown costs over an 

asset’s service life, there is a general agreement within academic studies and industry 

reviews on the major costs that contribute to the TCO of a chiller asset (Guarino, 2013; 

Naguib, 2009; Picard, 2017; Trane, 2007). The installation, energy, maintenance, and 

repair costs represent the four major cost categories generally agreed upon by the 

limited chiller-specific TCO analysis in literature. Of the four major categories, each is 

can be broken down and analyzed more specifically. In his paper for the Professional 

Retail Store Maintenance Association, Curt Picard provides a thorough breakdown of 

each major cost category (Picard, 2017):  

• Installed Cost: total cost of installation that includes all design, engineering, 

equipment, labor, incidentals, air distribution, and energy controls. Every aspect 

of the total installation is included in this cost. 

• Energy Cost: total cost of the energy required to operate the units or system. 

This includes the electric costs to operate the cooling and ventilation 

components as well as electrically powered heating components if applicable. 

Natural gas costs for heating are also included in this category. 

• Maintenance Cost: the cost of routine preventive maintenance associated with 

the equipment.  
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• Service/Repair Cost: the cost of all repairs made to the system including 

replacement parts and the labor for the repair.  

While the cost category definitions discussed in literature are straightforward, 

quantifying the costs associated with each category can be difficult (Naguib, 2009). 

Quality and efficiency of equipment, factory installed options, geographic location, 

temperature set points, store operating hours, cost of energy, cost of labor, cost of 

repair parts, preventive maintenance scopes, and types of controls are all contributory 

factors. The most accurate way to determine this cost for a specific system is through 

mining the historic data for each of the categories above. This information can then be 

evaluated to determine cost of ownership per ton, per unit, per square foot, or as a 

function of the initial installed cost. The data can be further evaluated based upon 

equipment age and geographic location to assist in determining possible trends (Picard, 

2017). Despite the agreement of the variables associated with chiller total cost, there is 

no standard, validated, and non-proprietary way of accurately modeling chiller TCO 

available. The two closest alternatives discovered were developed by: (1) the Air Force 

Civil Engineer Center (AFCEC) in conjunction with the Air Force Installation Management 

Support Center (AFIMSC); and (2) the Trane HVAC manufacturer--a subsidiary of the 

Ingersoll Rand Corporation. These models will be detailed below but present challenges. 

The USAF model is still a very initial attempt to model TCO and has not been validated 

with real-world data. The Trane model is based on proprietary software that must be 
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purchased and provided a “black box” model in which the user may not get all of the 

clarity on cost projections that he or she desires. 

AFCEC at Tyndall Air Force Base, Florida and AFIMSC Detachment 6 at Wright-

Patterson Air Force Base, Ohio have developed an initial TCO model for chillers using an 

additive linear model to account for all costs (Uddin et al., 2013). While the model was 

created using USAF and private industry subject matter expertise, BUILDER (USACE, 

2012), and Interim Work Information Management System (CENTECH, n.d.) data, there 

was no statistical validation done on the model (Brannon et al., 2018). However, the 

model proposed by AFCEC and AFIMSC (Equation 1) is consistent with literature while 

expounding upon certain areas as defined below 

 𝑇𝐶𝑂 = 𝐼𝑃 + 𝑃𝑀 + 𝑆𝑅 + 𝐸𝑅 + 𝑀𝐶 + 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐼𝑛𝑖𝑡𝑖𝑎𝑙

+ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑 + 𝑆𝑢𝑝𝑝𝑙𝑦𝑃𝑎𝑟𝑡𝑠 + 𝑆𝑢𝑝𝑝𝑙𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒

+ 𝐴𝑐𝑞 + 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 

(1) 

 

where, 

𝐼𝑃                                 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒 (𝑈𝑆𝐷); 

𝑃𝑀                               = 𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 (𝑈𝑆𝐷);  

𝑆𝑅                                = 𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 𝑅𝑒𝑝𝑎𝑖𝑟 (𝑈𝑆𝐷);  

𝐸𝑅                               = 𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 𝑅𝑒𝑝𝑎𝑖𝑟 (𝑈𝑆𝐷);  

𝑀𝐶                              = 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 (𝑈𝑆𝐷);  

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐼𝑛𝑖𝑡𝑖𝑎𝑙         = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑓 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 (𝑈𝑆𝐷);  

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑    = 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑓 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 (𝑈𝑆𝐷);  
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𝑆𝑢𝑝𝑝𝑙𝑦𝑃𝑎𝑟𝑡𝑠               = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑃𝑎𝑟𝑡𝑠 (𝑈𝑆𝐷);  

𝑆𝑢𝑝𝑝𝑙𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒           = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑃𝑎𝑟𝑡𝑠 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 + 𝐵𝑒𝑛𝑐𝑠𝑡𝑜𝑐𝑘 (𝑈𝑆𝐷);  

𝐴𝑐𝑞                             = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑢𝑡𝑢𝑟𝑒 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 (𝑈𝑆𝐷); and 

𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦                   = 𝐶𝑜𝑠𝑡 𝑡𝑜 𝑆𝑒𝑐𝑢𝑟𝑒 𝑎 𝑆𝑦𝑠𝑡𝑒𝑚 +  𝑙𝑜𝑠𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑟𝑒𝑎𝑡𝑠 (𝑈𝑆𝐷. 

 

• Initial Purchase (IP) – Initial installation occurs when a facility is first built or 

when an old system has completely failed and is replaced. Initial installation cost 

is the single cost considered for Low-price, Technically-acceptable (LPTA) 

contract award, however it is generally not the largest life-cycle cost (Uddin et 

al., 2013).  

• Preventative Maintenance (PM) – Systems require regular maintenance such as 

changing belts, fluids, and adding lubricants, in order to work to the 

manufacturer’s intended life span and to keep coverage. Manufacturers specify 

different timelines, parts, materials, and procedures for preventative 

maintenance which are added to work plans for technicians’ action. PM has a 

high life-cycle cost ranging from 3-5 times the installation cost (Brannon et al., 

2018). The Air Force performs PM using Air Force personnel (military or civilians) 

or base operations support contracts. The TCO for systems is dominated by 

maintenance and repair. Personnel must be trained, have supplies and parts, and 

must have a good relationship with manufacturers.  

• Sustainment Repair (SR) – Sustainment repair is work done ahead of an 

emergency--fixing problems early when the repair can be planned to reduce 
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mission impact or down-time. Similar to PM, sustainment requires knowledge of 

manufacture-specific systems, parts and supplies, and training and practice. The 

Air Force’s goal is to have the competency to do sustainment work in-house; 

however, in-house workers lack proficiency because of the large variety of 

Heating, Ventilation, and Air Conditioning (HVAC) equipment installed at most 

bases. Most sustainment repairs are contracted, as indicated in the expenditure 

analysis.  

• Emergency Repair (ER) – Emergency repairs are required when a component 

breaks and must be repaired without any pre-planning or warning. This type of 

repair causes the greatest amount of down-time. Troubleshooting, fault 

diagnosis, parts ordering, remediation, and repair all occur after the outage has 

started. Emergencies are by far the costliest repairs because the mission of the 

Air Force will suffer and linked costs increase until the emergency is resolved. 

Availability of parts and knowledge of systems for rapid fault diagnosis are 

essential.  

• Monitoring and Controls (MC) – HVAC systems are the largest consumers of 

energy in a typical facility (ASHRAE, 1996). Monitors and controls are used as 

part of the HVAC system to track and reduce the energy demand of the systems. 

These monitors and controls can be designed and installed independently of the 

HVAC unit and operate as a remote, automated (or semi-automated) virtual 

technician. The monitors and controls are often called Industrial Control Systems 
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(ICS) or Energy Management Control Systems (EMCS). ICS use wired or wireless 

internet connections to communicate with a computer-based dashboard.  

• Replacement (Aqc) – At the end of its useful life, or when most economical using 

Asset Management principles, a system is replaced. There is more to 

replacement cost than just the simple system price--there is a switching cost to 

be considered. Switching costs include new training, supply, logistics, and 

possibly retrofitting an existing space or configuration. When replacing a system, 

the entire TCO equation should be evaluated for cost comparison. 

• Training (initial + advanced) – There are two aspects of training for Air Force 

maintenance personnel. The HVAC Career Field Education and Training Plan 

(CFETP) was used to estimate the costs for minimal training to operate and 

maintain multiple systems (Department of the Air Force, 2017). Additional 

training must also be provided above the CFETP to ensure advanced 

troubleshooting and repair of specific systems. Advanced training requires the 

manufacturer to be involved in order to certify that the maintainer can use 

proprietary systems for fault diagnosis or have access to proprietary code for 

digital faults. The cost of this training is specific for each manufacturer. Currently 

the Air Force only does this training for the top manufacturer used at the base; 

any repairs required on other complex systems are outsourced or contracted.  

• Supply (Parts + Storage) – Supply and logistics costs also increase with multiple 

manufacturers. Chiller systems are built as factory units, or one-off special 

design units. There is little parts-interchangeability between the various 
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manufacturers. Supply knowledge, storage, and costs (because bulk purchase is 

limited) each increase as the variety of chiller manufacturers increase. 

Acquisition costs also increase as in-sourced maintainers lack proficiency to 

maintain all the systems on the base, and contracts must be written to repair the 

disparate systems. Additionally, the physical storage of spare parts and materials 

increases with additional manufacturers due to lack of interoperability. The 

ability to have commonly used and/or critical parts on-hand is essential to 

providing timely response to correct failures of essential systems. Like training, 

these parts are manufacturer specific so standardization would result in a similar 

decrease in sunk inventory cost, needed storage space, and inventory 

maintenance costs for an identical level of assurance. 

• Security – For control systems, security has become the largest threat and area 

for cost growth in the HVAC system. Control systems are both 

physical/mechanical parts of the HVAC system requiring maintenance of 

mechanical parts.  More importantly, they are digital devices connected through 

the internet of things (IOT) to centralized computers where a graphical interface 

allows for monitoring and control of the base’s entire HVAC system. Loss of 

security may have many forms: it may be the loss of the ability to upgrade all 

systems on the base to the correct security posture; installing a system that has 

malicious software pre-installed; or any number of clever ruses used by hackers 

to infiltrate and control items and information on an information network. 

Manufacturers keep proprietary information very close-hold.   Disparate 
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manufacturer systems are not easily combined to allow single-point viewing, and 

disparate systems can nearly never be combined to allow for single-point 

control. Thus, when multiple systems are introduced on a base the maintainers 

must fully duplicate all aspects of security, computer hardware for monitoring 

and control.  These truths add to huge costs and reliance on out-sourced 

contracts for control system operations, maintenance, and repair. There is little 

training, supply, or security provided by the Air Force. 

In addition to the TCO concepts developed in the literature and by the USAF, 

HVAC industry leader Trane has developed its own TCO model that considers the 

elements of first cost, installation cost, financing cost, commissioning cost, energy costs, 

repair costs, and maintenance costs (Trane, 2007). The general characteristics of the 

TCO model presented by Trane are once again consistent with the models presented 

previously. Additionally, Trane has developed a line of proprietary software to evaluate 

different chiller systems based on energy and economic comparisons. This System 

Analyzer software uses information about the building, its location (weather), and the 

chiller systems under consideration to automate four sets of calculations to predict the 

energy consumption and life-cycle costs of the chiller system: (1) building cooling and 

heating loads based on local weather; (2) equipment cooling and heating loads; (3) 

energy consumed by the CHILLER system; and (4) costs of owning and operating the 

CHILLER system. The program’s output reports provide a concise overview of the critical 

information allowing for a straightforward comparison of alternatives (Trane, 2013). 
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While the modeling efforts conducted by the USAF and Trane provide a starting 

point for chiller TCO modeling, there are limitations. Neither model provides a 

framework for estimating unknown data for the required inputs. This is especially 

limiting for organizations such as the USAF that do not have datasets with all of the 

required information. The model developed by Trane is part of a proprietary software 

package that: (1) operates with a “black box” construct that gives the user no insight 

into what process the model uses to arrive at a TCO value, and (2) may not be available 

to organizations due to software interoperability limitations. The model presented by 

AFCEC/IMSC is more transparent but fails to account for operation costs (energy usage) 

or utilize equivalent annual worth to make costs comparable across time. There is a final 

possible cost modeling software currently used by the US federal government, the 

Building Life Cycle Cost (BLCC) Program developed by the National Institute of Standards 

and Technology (NIST) (“Building Life Cycle Cost Programs,” n.d.). BLCC, too, falls short 

of providing a true TCO model as it focuses on either total facility TCO (too broad) or 

energy savings alternatives that do not fully account for other major elements of TCO 

(too specific). This clear gap in the existing body of work requires a model that is both 

transparent, easy to use by a wide range of personnel, and easily fieldable given existing 

software access constraints. 
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III.  Methodology 

Introduction 

This chapter presents the development of a total cost of ownership (TCO) model 

for United States Air Force (USAF) heating, ventilation, and air conditioning (HVAC) 

chiller equipment. The model is intended to allow personnel involved in the acquisition 

and fielding of chiller equipment to develop accurate TCO estimates for comparing 

purchasing alternatives. The model is developed in two stages: (1) a formulation stage 

that defines the TCO model and identifies/processes the available data; and (2) an 

implementation stage that creates cost factors to estimate the variables identified in the 

formulation state and outlines the assumptions of model implementation. The following 

sections describe these stages in detail. 

TCO Model 

This stage presents the formulation of a model that will estimate the TCO for a 

given piece of chiller equipment. After examining the available data, model formulation 

is accomplished in two steps: (1) identifying the model variables; and (2) processing the 

raw data. 

Decision Variables 

The TCO model incorporates the four major costs associated the service life of a 

chiller asset based on industry standards and existing literature to create the TCO 

dependent variable: (1) initial purchase and installation, (2) preventative maintenance 

(parts/labor), (3) unplanned repair (parts/labor), and (4) energy costs. Equation (2) uses 
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the two system characteristics chiller capacity (tons) and cooling type (air or water) as 

independent variables to predict TCO. The independent variables were chose based on 

the fact they would be easily available to decision makers. The data used to build the 

TCO model shown in (2) was based on cooling type and capacity; therefore, using only 

those two independent variables minimized the chance of compounded measurement 

error and collinearity within the model (Montgomery et al., 2012). Additionally, 

regression analysis would not make sense if costs were used as independent variables – 

the output TCO model would simply be a summation of all costs. The coefficients 

presented in Equation (2) were based on a multiple regression analysis (Figure 5) of the 

data provided in the ASHRAE chiller TCO analysis study (Naguib, 2009). The model 

utilizes weights of 208,000 (b1), 1525 (b2), and 116500 (b0) for type, capacity, and 

intercept, respectively. 

 

 𝑇𝐶𝑂 = 𝑏0 + [𝑏1𝐶𝐴𝑃] + [𝑏2𝐶𝑇] (2) 

where, 

𝐶𝐴𝑃                           = 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝐶𝑎𝑝𝑐𝑖𝑡𝑦 (𝑡𝑜𝑛𝑠); and 

𝐶𝑇                              = 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑇𝑦𝑝𝑒 𝐷𝑢𝑚𝑚𝑦 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝐴𝑖𝑟 = 0, 𝑊𝑎𝑡𝑒𝑟 = 1). 
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Figure 5 - TCO Model Multiple Regression Analysis 

 

The ASHRAE study data used to develop equation (2) was developed for use as a 

TCO comparison of water and air-cooled chillers ranging from 100 to 500 tons in cooler 

capacity. Theoretical data for energy usage, M&R, and initial costs are calculated based 

on a 20-year design life for each type and size of chiller based on size distinct geographic 

locations. The Chicago climate zone (ASHRAE Standard 90.1-2007 Zone 5) data was used 

as it most closely approximated the location of WPAFB. For energy data, approximately 

600 energy simulations were run using a typical office building in the U.S. Department of 

Energy’s (USDOE) DOD-2.2 energy simulator. Chiller coefficients of performance were 

based on the minimum ASHRAE efficiency requirements (ARI, 2003; ASHRAE, 2007) for 

industry standard air and water-cooled chillers using U.S. Energy Information 

Administration (USEIA) utility costs from 2007-2008. Installed costs were estimated 

using modular chilled-water systems in order to better delineate the chiller system costs 

from overall HVAC, providing a better cost comparison. Finally, maintenance costs 

included preventative maintenance and repair that were based on actual maintenance 

                                                                              

       _cons       116500   16339.04     7.13   0.000     77864.31    155135.7

         Cap         1525   45.31635    33.65   0.000     1417.844    1632.156

  type_dummy       208000    12817.4    16.23   0.000     177691.7    238308.3

                                                                              

      yrCost        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    5.7616e+11         9  6.4018e+10   Root MSE        =     20266

                                                   Adj R-squared   =    0.9936

    Residual    2.8750e+09         7   410714286   R-squared       =    0.9950

       Model    5.7329e+11         2  2.8664e+11   Prob > F        =    0.0000

                                                   F(2, 7)         =    697.91

      Source         SS           df       MS      Number of obs   =        10
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contract costs for different cities, systems, and capacities. These contracts included 

annual cost of labor, insurance premiums, material costs, and water treatment.  

For energy data, an attempt was made to extrapolate chiller-specific energy use 

from facility level energy data in order to calculate costs. This was not possible due to an 

incomplete list of chiller equipment, which prohibited confident assignment of facility 

cooling energy based on accepted percentages. Given the lack of usage and efficiency, 

neither empirical or simulation-based energy costs could be completed. As such, 

estimates of energy costs over the lifespan of a given chiller were completed using the 

proportions presented by ASHRAE (Naguib, 2009). The proportion of TCO represented 

by energy costs in a given climate zone are based on the maintenance/repair costs and 

as initial purchase costs. Therefore, energy cost estimation error is compounded by any 

error present in estimating either of those two parameters. 

Equation (2) was quantified using equivalent present (calendar year 2018) worth 

in United States Dollars (USD). The function used for determining present worth is 

shown in equation (3).  

 
𝑃 = 𝐹 (

1

1 + 𝑖
)

𝑛

 
(3) 

where, 

𝑃               = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 (𝑈𝑆𝐷);  

𝐹               = 𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑈𝑆𝐷); 

𝑖               = 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒 (%); and 

𝑛               = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 (𝑦𝑒𝑎𝑟𝑠). 
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Equation (3) was modified to calculate present value when costs were presented 

as past values e.g. a cost in 2009 USD that needed to be in 2018 USD. In that case, the 

present (2018) was treated as a future and was used. 

 
𝐹 =

𝑃

(
1

1 + 𝑖)
𝑛 

(4) 

The variables in equation (4) are consistent with equation (3). For this analysis, n, 

number of periods, is based on the difference between the annual dollar equivalent in 

which costs are presented and 2018 (assuming annual compounding). The discount rate, 

i, is 2.3% as determined by the 10-year average rate of change for air conditioning and 

refrigeration equipment from 1999-2009.(Abate et al., 2009).  

Data 

The empirical data used for this analysis was provided by the 88th Civil Engineer 

Group at Wright-Patterson Air Force Base (WPAFB), Ohio.  Chiller equipment 

specification and initial cost data were retrieved from the BUILDER Sustainment 

Management System (SMS), a web-based software application developed by the United 

States Army Corps of Engineers (USACE) Engineer Research and Development Center’s 

(ERDC) Construction Engineering Research Laboratory (CERL) to help civil engineers, 

technicians and managers decide when, where and how to best maintain building 

infrastructure (USACE, 2012). The BUILDER data used in this research came from two 

custom reports designed specifically for USAF infrastructure data management: Final 

03A – Component Section Report and QC 05 – Section Details Report (USACE, 2018). 
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The Final 03A – Component Section Report (sample shown in Figure 6) is a list of 

component-sections defined within the builder inventory along with their asset/section 

identification code, remaining service life (RSL), condition index (CI) ratings sorted by 

building, system, component, and material/equipment category. This report was used to 

generate equipment initial cost and building information for where equipment was 

installed. The QC 05 – Section Details Report (sample shown in Figure 7) lists the section 

details (a combination of material and equipment categories plus component subtype). 

The QC 05 report was used to generate the asset/section identification code, installation 

date, design life, remaining design life (RDL), CI rating, equipment make/model/serial 

number, capacity, and manufacture date. Before the data from the two reports were 

combined, the results were filtered and records for categories other than D303001, 

chilled water systems, were removed. The two datasets were combined using 

asset/section ID numbers that were unique to each piece of chiller equipment (Figure 

8). In total, 192 chillers were identified from the BUILDER data. This list is only a subset 

of the total chiller asset inventory at WPAFB – an exhaustive field survey would be 

required to fully identify all chiller assets at the base. 
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Figure 6 - Final 03A Report Sample (after processing) 

 

Figure 7 - QC 05 Report Sample (after processing) 

Component Subtype Section Name
Section 

Install Date
CRV

Section 

 CI

RSL 

(years)
Asset ID

Chiller, Centrifugal, Water Cooled Main Mech Chiller 3 2009 $519,089 87 10 7ed6a2ee-493d-44dc-afe8-ffe86e798881

Chiller, Centrifugal, Water Cooled Chiller 1998 $489,000 36 0 1bccef0f-1a60-4b83-8041-de7c233e6b3c

Chiller, Centrifugal, Water Cooled Chiller 1993 $489,000 58 4 05fc43ad-c1d5-4df2-92d7-ea61a4f7f7cb

Chiller, Centrifugal, Water Cooled CH-1 - CHILLER - 8300 2012 $489,000 87 11 c77badbf-431d-4437-b486-de65dd635ed1

Chiller, Centrifugal, Water Cooled CH-2 - CHILLER - 8300 2012 $489,000 70 6 1c68c30c-a186-4465-a736-0174e3bc54ae

Chiller, Centrifugal, Water Cooled CH-3 - CHILLER - 8300 2012 $489,000 70 6 8a1ac903-c266-4cf2-8d24-37d40f9b6c7c

Chiller, Centrifugal, Water Cooled 9109 Chiller 4 2007 $489,000 89 11 5d85e760-87e3-4b83-b210-fd00b2a1a419

Chiller, Centrifugal, Water Cooled 9109 Chiller 5 2012 $489,000 87 11 679d1b4d-5e7e-43e7-bc09-45bfdd93d1e8

Chiller, Centrifugal, Water Cooled 9109 Chiller 6 2006 $489,000 70 6 32f424ce-2e86-4316-88f6-b1bcf084128b

Chiller, Centrifugal, Water Cooled W161 Chiller 1 - 500 TN 1995 $489,000 49 2 bcf5c946-99b6-409e-a603-a5161f0e5425

Chiller, Centrifugal, Water Cooled W161 Chiller 2 - 500 TN 1995 $489,000 30 0 99d9138f-0de8-4786-bf2e-0b8d83940773

Chiller, Centrifugal, Water Cooled W161 Chiller 3 - 500 TN 1995 $489,000 30 0 f5eb6b55-60f8-40d3-a35d-d1e751a80a6e

Chiller, Centrifugal, Water Cooled
RM 716--CHILLER 3 (R-

134A)
2011 $502,000 79 8 ed59e1b1-c093-41d9-a947-a9a91d06e013

Chiller, Centrifugal, Water Cooled -  

400 TN
N015--Chiller 3 2017 $240,000 84 8 2b3ab438-a250-4dd3-a811-37d6ce9ce087

Chiller, Centrifugal, Water Cooled - 

1500 TN
N015--Chiller 1 2017 $984,000 84 8 4ce11607-d23e-4fe2-bb55-fe7108e97704

Chiller, Centrifugal, Water Cooled - 

1500 TN
N015--Chiller 2 2017 $984,000 84 8 c2088e47-56ac-4eac-81e8-6b3b501c1527

Chiller, Reciprocating, Air Cooled
ROOFTOP AIR CLD 

CHILLER
1988 $113,380 10 0 2173a78d-77c9-463e-b5b3-d48a8fc3eb73

Chiller, Reciprocating, Air Cooled
Future Redundant Chiller 

S186
2017 $110,000 83 7 ff6e8efb-68f0-4565-91be-03c8001c5a50

Chiller, Reciprocating, Air Cooled N/A 1997 $113,380 60 4 b4df4e9f-a23f-45d2-a94c-c17be12a3999

Chiller, Reciprocating, Air Cooled EXT NE--CHILLER 1996 $107,000 51 2 41c9c9b0-5db5-44c0-bde6-027c28356789

Component Subtype Section Name
Section Install 

Date

Section 

Age

Section 

RDL
Model Serial Number Capacity Manufacturer Section ID

Chiller, Rotary Screw
Door 9 Air Cooled 

Screw Chiller
2011 7 13

RTAA1104XT01 

A3CO GABF
V06L00717

R22  98 & 

73 Lbs/circuit

TRANE Series 

R
049cff89-58d4-4ac7-8405-049543dcae84

Chiller, Rotary Screw N/A 2006 12 8
RTAA0704XR01A30

0GBF
U06A06097 70 TONS TRANE, INC. 05d4a5af-1a88-4e37-8048-409fa1439bb6

Chiller, Centrifugal, Water Cooled Chiller 1993 25 -5 YTC3C3B3 YCBM045783 YORK 05fc43ad-c1d5-4df2-92d7-ea61a4f7f7cb

Chiller, Scroll CH 1 & 2 2016 2 18 30RAP055 50 TON CARRIER 07ae8a8c-2d06-4194-b035-1af7e965e6b9

Chiller, Reciprocating, Air Cooled -  

60 TN
N/A 2010 8 12 YCAL0056 56 Ton York 0a0aa7cd-9ce8-4e5a-b52d-80ed6bd9e48b

Chiller, Rotary Screw - 200 TN, Water 

Cooled Screw Liquid Chiller, Dual 

Compressors

Main Mech Chiller 

1&2
1989 29 -9 YTC1C3C2CLE MRP104581 York 0a3157f0-6f3c-4d38-bd49-b1782259f1ac

Chiller, Rotary Screw - 200 TN, Water 

Cooled Screw Liquid Chiller, Dual 

Compressors

Main Mech Chiller 

1&2
1989 29 -9 YTC1C3C2CLE MRP104582 York 0a3157f0-6f3c-4d38-bd49-b1782259f1ac

Chiller, Scroll

60 TON AIR 

COOLED 

CHILLER

2006 12 8
CGAFC604AKA1000

D00000N00000W00
C06C01869 60 TON TRANE, INC. 0a8d1189-8092-4bf9-ba5e-a796a17028d3

Chiller, Scroll
EXT SOUTH--

CHILLER
2016 2 18

AGZ120EPMNN-

ER00
STNU160400031 114 TONS DAIKEN 0df8a3f8-b63c-4e5a-882a-6800ad1a1ece

Chiller, Rotary Screw - 130 TN, Air 

Cooled Screw Liquid Chiller

110 TON AIR 

COOLED 

CHILLER

1997 21 -1
RTAA1104XH01A3D

0BK
U97C09171 110 tons TRANE, INC. 0fff3f74-1c7f-4139-9458-673ab90f53c7

Chiller, Centrifugal, Water Cooled - 

1000 TN

1999 TRANE 

CHILLER
1999 19 1 CVHF770 L99M05014M 770 TONS TRANE, INC. 1058684a-7c28-4ff6-b9b3-eb544837ee7f

Chiller, Rotary Screw - 150 TN, Water 

Cooled Screw Liquid Chiller, Dual 

Compressors

Mechanical Room 

C
1991 27 -7

RTHA150FCN0LDU

C3LF2LFNNV0GUQ
U91B03543 150 TON TRANE, INC. 10eb8049-de03-4c69-90e1-31e60b0493bc

Chiller, Scroll CHILLER 1995 23 -3 TRANE, INC. 115697b2-90a7-4ec7-8e3f-beafe386f3a6

Chiller, Reciprocating, Air Cooled -  

50 TN

2FL RM 26--

CHILLER (50 TON)
2000 18 2 30HL-050-A-600 3697G92854 50 Ton 

CARRIER 

CORP.
1450cffa-525c-4cad-b729-ad4a54f03270

Chiller, Reciprocating, Air Cooled -  

50 TN
EXT NW--CH 1 2012 6 14

CGAM 052F 2H02 

AXD2 A1A1 A1AX 

XA1D 1A4X XXXX 

XB1A 

U12M33701 52 TON TRANE, INC. 14a941ee-8b3a-488e-8bc7-49a10931cbb1
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Figure 8 - Sample of Combined Final 03A and QC 05 BUILDER Databases 

 The final two empirical datasets used for this analysis came from the 

USAF TRIRIGA database, an integrated workplace management system (IWMS) designed 

to increase the operational, financial and environmental performance of USAF facilities 

and real estate (IBM, 2018). These datasets show all of the preventative maintenance 

(PM) and repair (emergency and high/medium sustainment) performed at WPAFB from 

1 May 2017 through 30 September 2018. TRIRIGA data provides work order information 

including work details, equipment type, and the costs associated with the work. These 

datasets contained 247 chiller-specific repair work orders and 1129 chiller-specific PM 

work orders (sample dataset shown in Figure 9). 

 Theoretical data was incorporated into this analysis as a means of 

estimating cost factors for the relevant decision variables and checking the quality of 

empirical data provided. Two sources were used for the theoretical data: (1) the 

Whitestone Facility Maintenance and Repair Handbook (Abate et al., 2009), and (2) an 

Component Subtype Asset ID  CRV 
Section 

Install Date
Section Age Section RDL

Section 

CI

Serial 

Number
Manufacturer Model

Capacity 

(tons)

Chiller, Centrifugal, Water 

Cooled
b16764cb-b6e1-4601-bb77-a5953dc81d38  $   519,088.51 1993 25 -5 30 469514 CARRIER

10XB140004

01
14

Chiller, Centrifugal, Water 

Cooled - 1000 TN
7938bd82-368e-4cfd-a2d7-5bc4412b8b6d  $2,057,229.73 2011 7 13 87 3411Q21117 CARRIER

19XRV70704

75LFH64
890

Chiller, Centrifugal, Water 

Cooled -  200 TN
bbf9f19b-bb83-4759-a372-6b729ab35af2  $   147,000.00 1994 24 -4 49 2893J46950 CARRIER

23XL2121EC

60
215

Chiller, Reciprocating, Air 

Cooled
3d5ee9df-46d1-437d-9b53-b92399326b98  $   112,000.00 1982 36 -16 1 1494F91185 CARRIER

30GT-015-

500
15

Chiller, Reciprocating, Air 

Cooled -  50 TN
1450cffa-525c-4cad-b729-ad4a54f03270  $   158,000.00 2000 18 2 30 3697G92854 CARRIER

30HL-050-A-

600
50

Chiller, Reciprocating, Water 

Cooled
2d23e811-d893-4c45-b867-99f21e26dad9  $   118,000.00 1997 21 -1 70 0697F51703 CARRIER

30HL-050-A-

600
50

Chiller, Reciprocating, Air 

Cooled -  50 TN
3b69f6fc-b645-4e7a-b047-348e8f5589f5  $   156,000.00 1998 20 0 79 0998F27043 CARRIER

30HL-050-A-

600
50

Chiller, Reciprocating, Air 

Cooled -  20 TN
27bbffa0-f438-4f22-ab3a-2d600d913992  $     45,000.00 1997 21 -1 73 4797F10552 CARRIER

30HWA018-

A-600FG
18

Chiller, Reciprocating, Air 

Cooled - 110 TN
e352eb16-5477-4e95-9df6-fe075d25f415  $   241,000.00 2010 8 12 78 1911Q19191 CARRIER 30HXA106N 106

Chiller, Rotary Screw - 200 TN, 

Water Cooled Screw Liquid 

Chiller

86d0908c-102d-45d8-bb4b-e38a01a9a604  $   129,000.00 2005 13 7 73 0610Q18148 CARRIER 30HXA106R 200

Chiller, Scroll 171a74b3-1320-486f-86bc-a9eb314b5075  $     16,500.00 2005 13 7 80 4905Q04955 CARRIER
30RAN045-

611
45

Chiller, Scroll bc52c3ee-9069-466e-a56c-ec5a0cfe8dee  $     16,500.00 2015 3 17 87 0510Q39008 CARRIER
30RAP0156D

A06100
14
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American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) 

study on chiller TCO analysis (Naguib, 2009), which has already been discussed.  

The Whitestone Handbook estimates component-level replacement, 

maintenance, and repair pricing using the Maintenance Task Database developed by 

USACE. It does not include operation cost estimation data. Developed in the 1980s, 

much of the labor information for this database is based on Engineered Performance 

Standards developed jointly by the U.S. Navy, Army, and Air Force. The Whitestone 

Handbook revises this data with models and components common to civilian 

construction (such as elevators, storefront doors and windows, and detailed wall and 

floor coverings). Labor requirements and material costs were updated through 

extensive interviews with manufacturers, distributors, and service providers. Equipment 

requirements are shown only for heavy HVAC and electrical equipment and roads. For 

M&R tasks it is assumed that the necessary equipment is included in contract overhead 

costs. The Whitestone database has over 1,200 components and more than 15,000 

related M&R tasks and subtasks, although only chiller-specific tasks were used for this 

research. Task frequencies are the expected incidence of repair or replacement in the 

Washington, D.C. area. These frequencies are assumed to hold for other regions. The 

major exception to this assumption is HVAC equipment, for which specific frequencies 

are reported and used for this analysis of chillers (an HVAC system component). 

Additionally, geographic (original data taken from Washington, D.C., USA) and annual 

percent escalation cost factors are also included to account for location and time-based 

cost changes. 
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Data Processing 

The raw empirical data used for this analysis contained irrelevant and redundant 

fields, missing values, improperly formatted entries, and values not consistent with 

accepted chiller cost estimation logic. As such, data processing was required in order to 

prepare the data for analysis. Once the BUILDER data was filtered to only show chiller 

equipment, data records missing key entries (component initial cost, size, type, and 

manufacturer) were removed and an attempt to find the missing data was used by 

either using similar entries, commercial cost estimates, or researching options based on 

existing data. The serial and model numbers for individual assets were used most often 

to determine missing data and allowed for the completion of 19 data records. For data 

records that still had crucial information missing after this process, removal of the 28 

records were completed to avoid skewing the analysis. In addition to records that were 

incomplete, illogical data was examined. The data that did not make sense, mostly with 

respect to size versus initial cost, was scrutinized and if no there was no logical way for 

the data to be reconciled, those records were also removed. For example, if the 

BUILDER data stated that a 500-ton capacity chiller had an initial cost of less than 

$20,000 it was pulled for closer examination. Once it was judged as an incorrect data 

point and not something that could be remedied, the entry was removed. Five BUILDER 

data records were removed for not making logical sense. This was the final removal of 

BUILDER data and resulted in 159 complete records for individual pieces of chiller 

equipment.  
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 For the TRIRIGA work order data, the only processing required involved 

removing work orders not relevant to chiller-specific work or work orders that could not 

be tied to chiller equipment from the BUILDER data by asset name. Using this process, 

the preventative maintenance and repair work order entries shrunk from 44,795 entries 

to 808 that were specific to individual chillers across WPAFB. Figure 9 shows the raw 

work order dataset while Figure 10 shows the combined TRIRIGA and BUILDER data. The 

final data processing step consisted of summing all of the work orders assigned to each 

individual chiller asset in order to determine the total cost of work completed for each 

piece of equipment, resulting in 94 records. The total data processing and aggregation 

process is summarized in Figure 11. 

 

Figure 9 - TRIRIGA Work Order Data Sample 

WT Priority
Facility 

Number
Task Name Total Cost

Total Labor 

Cost

Total 

Operating 

Materiel Cost

Total Non-

Inventory PO 

Line Items Cost

Name Asset

2A - Preventive 

Maintenance
10837

D30352201950 - A - WRIGHT-

PATTERSON AFB - HVAC SHOP - 

ZHTV0001/10837

$37.87 $37.87 $0.00 $0.00 

D3030 - COOLING GENERATING 

SYSTEM - AIR COOLED 

CONDESNING UNIT #1 - 10837 - 

EXT EAST

2A - Preventive 

Maintenance
10837

D30352201950 - A - WRIGHT-

PATTERSON AFB - HVAC SHOP - 

ZHTV0001/10837

$37.87 $37.87 $0.00 $0.00 

D3030 - COOLING GENERATING 

SYSTEM - AIR COOLED 

CONDESNING UNIT #2 - 10837 - 

EXT WEST

2A - Preventive 

Maintenance
10837

D30352201950 - A - WRIGHT-

PATTERSON AFB - HVAC SHOP - 

ZHTV0001/10837

$37.87 $37.87 $0.00 $0.00 

D3030 - COOLING GENERATING 

SYSTEM - AIR COOLED 

CONDESNING UNIT #3 - 10837 - 

EXT WEST

2A - Preventive 

Maintenance
11455

D30351302950 - A - WRIGHT-

PATTERSON AFB - HVAC SHOP - 

ZHTV0001/11455

$208.27 $208.27 $0.00 $0.00 

D3030 COOLING GENERATING 

SYSTEM - AIR COOLED CHILLER - 

11455 - EXT SW

2A - Preventive 

Maintenance
20056

D4065100195008 - A - F/20056 - 

CHILLER - WRIGHT-PATTERSON 

AFB - ENVIRONMENTAL CONTROL 

SYSTEMS - YEARLY

$0.00 $0.00 $0.00 $0.00 

D3030 COOLING GENERATING 

SYSTEMS -       CHILLER - 20056 - 

BAY 11

2A - Preventive 

Maintenance
20056

D4065100195008 - A - F/20056 - 

WRIGHT-PATTERSON AFB - 

ENVIRONMENTAL CONTROL 

SYSTEMS - YEARLY

$227.21 $227.21 $0.00 $0.00 

D3030 COOLING GENERATING 

SYSTEMS -       CHILLER - 20056 - 

BAY 11

2A - Preventive 

Maintenance
20497

D30351103950 - A - WRIGHT-

PATTERSON AFB - HVAC SHOP - 

AREA B - ZHTV0002/20497

$340.81 $340.81 $0.00 $0.00 

D3030 COOLING GENERATING 

SYSTEMS -       COOLING TOWER - 

20497 -

2A - Preventive 

Maintenance
21615

D30352103950 - A - WRIGHT-

PATTERSON AFB - HVAC SHOP - 

AREA B - ZHTV0002/21615 - 

$227.21 $227.21 $0.00 $0.00 

D3030 COOLING GENERATING 

SYSTEMS -       CU 1 and 2 - 21615 - 

EXT EAST
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Figure 10 - Final Combined Dataset (TRIRIGA + BUILDER) Sample 

 

Figure 11 - Data Processing and Aggregation Methodology 

WO Type
Capacity 

(tons)

Cooling 

type
BUILDER Asset ID

 Chiller 

Specific PM 

Cost 

Section 

Age (yrs)
Manufacturer

 Current 

Replacement 

Value (USD) 

Condition 

Index

2A - Preventive 

Maintenance
110 Air

049cff89-58d4-4ac7-8405-

049543dcae84
 $          265.07 7 TRANE  $         145,000.00 88

2A - Preventive 

Maintenance
51.8 Air

07ae8a8c-2d06-4194-b035-

1af7e965e6b9
 $      1,438.98 2 CARRIER  $           33,000.00 100

2A - Preventive 

Maintenance
56 Air

0a0aa7cd-9ce8-4e5a-b52d-

80ed6bd9e48b
 $          151.47 8 York  $           79,000.00 90

2A - Preventive 

Maintenance
114 Air

0df8a3f8-b63c-4e5a-882a-

6800ad1a1ece
 $      1,666.18 2 DAIKEN  $           17,000.00 100

2A - Preventive 

Maintenance
52 Air

14a941ee-8b3a-488e-8bc7-

49a10931cbb1
 $          492.28 6 TRANE  $         153,000.00 79

2A - Preventive 

Maintenance
45 Air

171a74b3-1320-486f-86bc-

a9eb314b5075
 $          757.36 13 CARRIER  $           16,500.00 80

2A - Preventive 

Maintenance
30 Air

17820b10-7e61-4aff-ab6d-

610f33321e86
 $          681.62 11 TRANE  $           48,500.00 79

2A - Preventive 

Maintenance
80 Air

1d61f86f-c0a7-4321-a136-

c3d5eafd4852
 $          795.22 13 TRANE  $         153,868.45 58

2A - Preventive 

Maintenance
40 Air

1fdbf626-7180-4223-8479-

e857c203c8b4
 $          378.68 23 TRANE  $           59,968.38 65

2A - Preventive 

Maintenance
60 Air

21d2326c-f8a6-4621-8be1-

15cfdca5ddad
 $          537.57 4 YORK  $           79,000.00 86

2A - Preventive 

Maintenance
52 Air

22815b70-b0f7-4f26-ad24-

25f8cabb5bb5
 $          908.83 5 TRANE  $         160,000.00 87

2A - Preventive 

Maintenance
15 Air

32f6b9c5-8da2-40aa-b66b-

051f9bad8d8a
 $          757.36 3 TRANE  $         107,000.00 99

2A - Preventive 

Maintenance
350 Air

3364acd3-1fd4-4e2d-b18d-

1e6fbe634e57
 $      3,483.84 12 York  $         791,552.85 92

2A - Preventive 

Maintenance
80 Air

3674660f-4d8e-4d5c-afbd-

de16d06e0069
 $          833.09 15 TRANE  $         153,868.45 58

2A - Preventive 

Maintenance
60 Air

3900de2e-9bc5-49c6-bfdb-

56e17d8c34dc
 $          454.41 5 TRANE  $         153,000.00 87
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Model Implementation 

This stage presents the implementation of the specified model that will estimate 

the TCO for a given piece of chiller equipment. After the formulation phase was 

complete, implementation was accomplished in three steps: (1) estimating the 

parameters of each variable; (2) performing a comparative analysis between the data 

sources and; (3) identifying the assumptions made during implementation. Ideally, this 

analysis would be completed by developing a literature-based model then validating the 

model using sufficiently large empirical data and using theoretical data to compare and 

contrast the models in order to achieve accurate predictive ability. The combination of 

small (work order and number of chillers) and nonexistent (energy) empirical datasets 

complicates the analysis. While the small datasets were used for a comparative analysis 

to the theoretical data, energy costs were predicated based on theoretical relationships 

between initial purchase cost and maintenance/repair costs over the lifespan of a given 

chiller.  

Variable Estimation  

 To develop a means of cost estimation for each of the three parameters of the 

TCO model, regression analysis was completed for both initial purchase cost (using 

component replacement value (CRV) as the proxy) and maintenance/repair data. Simple 

regression using chiller capacity as the independent variable (the predominant practice 

in literature) was completed with subsequent multiple regression used to explore 

additional significant independent variables. Once the regression analysis of the 

empirical data was complete, the same analysis was performed using the theoretical 
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data. Only simple regression analysis was completed on the theoretical data given the 

absence of other possible variables.  

All variables estimated through regression analysis were proposed linearly due 

to subjective graphical analysis (Montgomery et al., 2012) and lack of literature-based 

evidence that any specific cost factor exhibited non-linear behavior. Additionally, 

despite the logic that buying a chiller with zero cooling capacity (i.e. not buying a chiller 

at all) would yield zero cost, regressions were not forced to an intercept of zero. The 

decision not to force non-zero intercepts was done for three reasons: (1) If the curve is 

forced through zero, the intercept is set to 0 before the regression is calculated, thereby 

setting the bias to favor the low end of the calibration range by “pivoting” the function 

around the origin to find the best fit and resulting in one less degree of freedom 

(Montgomery et al., 2012); (2) forcing a regression with an intercept of zero is 

essentially creating a data point that does not exist – a method inconsistent with proper 

regression analysis (Montgomery et al., 2012); and (3) because standalone chillers are 

generally 10 tons or greater, the minimum size of represents costs that escalate at a 

steeper slope from zero compared to cost escalation based on the size of the chiller. 

The comparison of regression results was performed as a means of quality 

checking the empirical data under the assumption that the empirical models should 

match the theoretical models in general trend and magnitude.  Once the comparative 

analysis was completed, judgements on the quality of predictive capability could be 

made to give potential users insight into the accuracy of predicted costs. Due to only 

having 17 months of empirical maintenance and repair data and no access to energy 
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data, the model validation was done through a comparison of individual cost factors 

instead of a more holistic approach that used the full model. The final step of model 

implementation and validation was used to model specified to predict the 20-year TCO 

for the chillers in operation at WPAFB and compare those values to that of our 

theoretical data. 

Assumptions 

The general assumption underscoring the analysis portion of this research is that 

of accurate and representative data. This is a key assumption in any effort, but given 

that the data used here was generated entirely by third parties not directly associated 

with this research, unknown quality issues may very well exist. The assumption of valid 

cost proportions in the ASHRAE study on chiller TCO (Naguib, 2009) is also applicable 

throughout this analysis, especially without a quality source of empirical data to validate 

energy costs. Finally, the data processing actions detailed previously are assumed to not 

create any undue skewing of the data.  

From a more specific point of view, the use of component replacement value as 

a proxy for initial purchase of a chiller must be assumed. According the BUILDER 

database manager at WPAFB, CRV represents the cost to replace chiller equipment 

estimated from industry cost estimating tools (Horning, 2018). For maintenance/repair 

data, the key assumption is that only 16 months of data is representative enough to 

extrapolate 20-year TCO for a given piece of equipment. While the sample of chillers 

examined does contain a broad range of equipment ages and sizes, a long period of data 

collection would increase the confidence in a representative sample.  
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Finally, this analysis assumes that the theoretical proportions of TCO attributed 

to energy are reliable estimates due a lack of empirical energy data. Currently, the USAF 

only tracks facility level energy data. While there are monitoring and control systems in 

place on most modern chillers that could provide energy data, there is no formal 

collection or aggregation of this data into an accessible database. 
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IV.  Analysis and Results 

Introduction 

The purpose of this chapter is to present the research findings, analysis, 

conclusions, and recommendations for future research. The chapter is organized in 

three major sections. First, the research findings compare the TCO model cost variables 

to both theoretical and empirical data in order to determine the validity of the model. 

Second, a data collection section is included in order to address the deficiencies within 

the empirical data that need to be addressed. Finally, a third section discusses the 

follow-on research that should be conducted in order to improve the predictive 

capability of this chiller TCO analysis.  

Model Validation 

Model validation was completed using the available data to determine the 

accuracy and confidence of predictions for the TCO model. This section is broken down 

into sections that correspond with the variables from the TCO model specified in 

Chapter 3: initial cost, maintenance plus repair, energy costs. A final summary of the 

model validation results is also included. Single regression analysis was completed using 

Microsoft Excel and multiple regression analysis was completed using Stata 14. 

Initial Cost 

The initial cost is broken down by type of chiller (air- or water-cooled) for more 

detailed analysis. Additionally, there were records in the WPAFB initial cost data that 
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contained unrealistic values based on industry standards that skewed the regression 

analysis. While a graphical analysis of the data identified the possibility of outliers, 

actual outliers were identified as points outside of a plus or minus three standard 

deviation range, ± 3 SD, around the mean, μ (Larose & Larose, 2015). Identifying and 

removing all data records that fell outside of the μ ± 3 SD range eliminated the 

unrealistic data. 

Since the empirical data contains more than just chiller capacity and type as a 

descriptor, a multiple regression analysis was completed using initial cost as the 

dependent variable with cooling capacity, manufacturer, and cooling type as the 

independent variables. The result, shown in Figure 12, shows that the only variable 

significant to initial cost at the 90% confidence level is cooling capacity. This serves as 

confirmation of simple regression comparison for all chiller types across the three 

datasets – while there may be cost differences based on cooling type and manufacturer, 

they are insignificant when estimating initial cost of purchase. Both the single and 

multiple regression analysis show that the theoretical dataset used to create the overall 

TCO model (Naguib, 2009) provides a realistic estimate of initial cost – the first step to 

showing overall TCO model validity.  
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Figure 12 - WPAFB Initial Cost Multiple Regression Analysis 

 

The initial cost comparison is presented in Figure 13 through Figure 15 and 

contains the initial costs for all chiller types. The comparison without delineating chiller 

type confirm earlier trends while the fit for the empirical WPAFB data doubles (RWPAFB
2 = 

0.6632). The slope coefficients (range = 300 – 892.93), intercept values (range = 8415.3 

– 150000) and model fits (RNaguib
2 = 1, RWhitestone

2 = 0.9687, and RWPAFB
2 = 0.4976) once 

again demonstrate similar trends and orders of magnitude. The large disparities 

between intercept terms for these regressions does indicate that the three data sources 

are not perfect estimators of each other, but they do provide validation of the general 

behavior of the costs for initial costs. The consistency across these comparisons shows 

that the initial cost variable in the theoretical TCO model presented in chapter three is a 

valid estimator.  

                                                                                      

               _cons     60995.96    49712.1     1.23   0.222    -37312.73    159304.7

 CoolingTypeDummyVar     42214.24   52075.22     0.81   0.419    -60767.67    145196.2

 ManufcturerDummyVar    -14510.54   17921.71    -0.81   0.420    -49951.82    20930.73

MfctSpecCapacitytons     1039.388   102.7673    10.11   0.000     836.1595    1242.616

                                                                                      

                 CRV        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                                      

       Total    1.9637e+13       139  1.4127e+11   Root MSE        =    2.6e+05

                                                   Adj R-squared   =    0.5179

    Residual    9.2624e+12       136  6.8106e+10   R-squared       =    0.5283

       Model    1.0374e+13         3  3.4581e+12   Prob > F        =    0.0000

                                                   F(3, 136)       =     50.78

      Source         SS           df       MS      Number of obs   =       140
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Figure 13 - WPAFB Chiller Initial costs 

 

Figure 14 - Whitestone Chiller Initial costs (Abate et al., 2009) 

y = 772.25x + 59654
R² = 0.4976
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Figure 15 - ASHRAE Chiller Initial costs 

Maintenance and Repair Costs 

 Before the maintenance and repair costs from the WPAFB data were 

combined or analyzed using the same single regression techniques used for initial cost, a 

multiple regression analysis was completed to determine if there were other significant 

variables that impact maintenance and repair costs. Specifically, the additional variables 

that were logical possible influencers were age of chiller, manufacturer, and condition 

index. Three stepwise regressions were completed employing a 90% significance level 

cutoff using maintenance, repair, and combined maintenance and repair costs as the 

dependent variables.  

y = 500x + 200000
R² = 0.2793

$0

$100,000

$200,000

$300,000

$400,000

$500,000

$600,000

$700,000

0 100 200 300 400 500 600

$2
01

8

Chiller Size (tons)

ASHRAE All Chiller Type Replacement Cost



www.manaraa.com

 

57 

 

Figure 16 - Maintenance Cost Stepwise Regression Results (p - 0.10) 

 

Figure 17 - Repair Cost Stepwise Regression Results (p - 0.10) 

 

Figure 18 - Maintenance + Repair Cost Stepwise Regression Results (p - 0.10) 

The output from the stepwise regressions show that, similar to initial purchase, 

cooling capacity is the only statistically significant variable for predicting maintenance 

costs. For repair and maintenance plus repair costs, one would interpret the results of 

the regressions as completely random with no influence from any of the available 

                                                                              

       _cons     946.0046   144.9859     6.52   0.000     657.7337    1234.275

Capacitytons     1.744559     .44632     3.91   0.000      .857155    2.631962

                                                                              

Chille~MCost        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total     109887574        86  1277762.48   Root MSE        =    1046.8

                                                   Adj R-squared   =    0.1424

    Residual    93145101.4        85  1095824.72   R-squared       =    0.1524

       Model    16742472.2         1  16742472.2   Prob > F        =    0.0002

                                                   F(1, 85)        =     15.28

      Source         SS           df       MS      Number of obs   =        87

                                                                              

       _cons     1422.786     300.02     4.74   0.000     821.2819     2024.29

                                                                              

Chille~XCost        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total     267335675        54  4950660.64   Root MSE        =      2225

                                                   Adj R-squared   =    0.0000

    Residual     267335675        54  4950660.64   R-squared       =    0.0000

       Model             0         0           .   Prob > F        =         .

                                                   F(0, 54)        =      0.00

      Source         SS           df       MS      Number of obs   =        55

                                                                              

       _cons     2062.039   233.4143     8.83   0.000     1598.458     2525.62

                                                                              

TotalWOCos~D        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total     466149922        92  5066846.98   Root MSE        =      2251

                                                   Adj R-squared   =    0.0000

    Residual     466149922        92  5066846.98   R-squared       =    0.0000

       Model             0         0           .   Prob > F        =         .

                                                   F(0, 92)        =      0.00

      Source         SS           df       MS      Number of obs   =        93
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variables. Here is where one can point to the lack of data (only 17 months’ worth) as a 

reason for the apparently illogical result of the regressions. Additionally, it is illogical 

that age or condition would not play a part in the maintenance and repair costs since 

equipment deteriorates with age and requires more upkeep (Steenhuizen et al., 2014). 

The relatively small span of data with relation to the service life of a chiller prevents us 

seeing the full picture.  

Despite the limitations of a small dataset, the stepwise regression does provide a 

basis for the assumption that cooling capacity is an appropriate variable for predicting 

maintenance costs. Assuming that repair costs follow a similar trend as repair costs that 

cannot be identified given such a small dataset, this informs our simple regression 

comparison of the theoretical and empirical datasets. Since cooling type is not identified 

as a significant variable (as with initial cost), only a comparison between the datasets 

with chillers of both cooling types is included here. Additionally, since the WPAFB 

empirical data only contains 17 months of data, it can only be compared to the other 

datasets in terms of general data trends, not magnitude, i.e. regression slope and not 

intercept. The single regression analysis is shown in Figure 19 through Figure 21.  
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Figure 19 - WPAFB Chiller Maintenance + Repair Costs 

 

Figure 20 - Whitestone Chiller Maintenance + Repair Costs (Abate et al., 2009) 
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Figure 21 - Naguib, 2009 Chiller Maintenance + Repair Costs 

The single regression comparisons yield two conclusions: (1) the WPAFB data 

compares poorly to the theoretical data – effectively confirming the conclusions made 

using stepwise regression; and (2) a comparison of the two theoretical datasets show 

very similar trends and magnitudes for estimating total maintenance and repair costs 

over the lifespan of a chiller. The single regression models for both the Whitestone and 

Naguib data show good fit (RWhitestone
2 = 0.9725 and RNaguib

2 = 0.9511) while the slopes 

(MWhitestone = 439.27 and MNaguib = 325) and intercepts (BWhitestone = 75071 and BNaguib = 

25500) exhibit the same direction and similar magnitudes. Despite the lack of conclusive 

interpretation drawn from the empirical WPAFB data, the comparison of the two 

theoretical datasets provides confidence, albeit lower confidence than the initial cost 

analysis, that the maintenance and repair variable of our overall TCO model is estimated 

with acceptable accuracy.   
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Energy Costs 

The final variable in the TCO model is energy costs. This variable is unique in the 

respect that it is the only variable in this analysis with no empirical data available. While 

the lack of energy data is not ideal, it did not prevent an analysis from taking place.  

During the validation phase for the first two variables of the TCO model, initial 

cost and maintenance plus repair, theoretical data was compared with empirical data 

and conclusions were made based on how well the theoretical data matched the 

empirical. Without the ability to do that for energy data, one can only make judgements 

based on the validity of the other variable examined. In this case, the energy data came 

from the ASHRAE chiller total cost study (Naguib, 2009). Being a purely theoretical 

dataset based on DOE energy simulation software, there is no doubt that the data will 

not translate perfectly to describing a much messier real-world system (Larose & Larose, 

2015). However, the data from the ASHRAE study for initial cost and maintenance plus 

repair yielded regression curves that were similar enough to provide confidence in their 

descriptive validity. That being said, in this case with no empirical energy data, one must 

make the assumption that the theoretical energy data is equally valid at describing real-

world energy usage by chiller equipment. As such, the final variable of the model is 

validated – providing the final piece to overall validation of a TCO model derived from 

theory. The approach to energy cost estimation used in this research, rather than 

energy simulation, was taken based on the lack of descriptive data for the chillers being 

studied. Technical details available for each chiller consisted of cooling type, size, 

manufacturer, and model. Attempts to identify efficiency coefficients and load curves 
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associated based on model numbers were unsuccessful as that information is 

proprietary by manufacturer and records at WPAFB did not contain the information. 

Validation Conclusions 

In an ideal world, the validation of the final TCO model presented by this 

research would have been carried out using ample amounts of empirical data collected 

over enough time to cover at least one fully expected design life of an average chiller. 

The validation protocol presented here is not ideal, but provides for foundational model 

that provides an approximation of chiller TCO given sparse, low-quality data. Since 

confidence in the model is rooted in a comparison of individual cost variables across 

datasets to make judgments on the whole, the model is obviously hindered by a small 

set of empirical data for maintenance plus repair and a complete lack of empirical data 

for energy usage. The model is useful, however, to decision makers for three reasons: 

(1) it provides a statistically valid process of model development that is supported by 

both existing academic literature and industry standards; (2) the model provides 

another level of cost estimating that required planners to consider TCO and apply its 

concepts to design and acquisition of chiller equipment; and (3) the assumptions and 

limitations are clearly laid out in a way that allows for continual improvement in the 

model as data collection schemes within the USAF improve. A final, holistic view of the 

model’s output when using the 94 chillers examined by this research is shown in Figure 

22. The plot shows both the breakdown of component costs and the predicted TCO over 

20 years expected for the chillers at WPAFB. The plot mostly closely resembles the data 
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used to build the model (Naguib, 2009) for obvious reasons; the plot also resembles the 

relationships illustrated through the cost factor plots from the WPAFB and Whitestone 

Reference (Abate et al., 2009) data sources. Figure 22 also highlights the importance of 

capturing energy costs for modeling TCO as energy represents the second largest cost 

fraction of the TCO. 

 

Figure 22 - TCO Predictions for WPAFB Chillers 

Recommendations 

The recommendations provided explain actions that should be taken to improve 

the quality of analysis and accuracy of this research and subsequent work. Data quality 

and opportunities for fortune research are the focus of this section. 
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Improved Data Collection 

 The lack of a consistent, purposeful data collection scheme for even the 

most basic elements involved with TCO analysis for chiller equipment provided for a 

challenging development phase and limited predictive model. The recommendations for 

improved data collection will be largely broken down based on the variables present in 

the TCO model. The recommendations, in order of how addressing each would improve 

this analysis, are: (1) lack of data and quality of existing data; (2) improving the 

implementation of consistent, active, and flexible data science policies across the USAF; 

and (3) integrating existing databases. 

The most glaring deficiency of the model is the total lack of empirical energy 

data. Despite a USAF Energy Flight Plan (Department of the Air Force, 2017) designed to 

“a comprehensive approach to energy management to improve its ability to manage 

supply and demand in a way that enhances both mission capability and readiness” 

through the year 2036, the USAF does not require energy monitoring at any sub-level 

below a total facility. In order to know how money is spent on energy (or any category) 

and bring that spending under management, it must be measured. It is the total lack of 

energy monitoring for facility sub-systems that makes this the first priority for improving 

the USAF data collection approach for equipment TCO analysis. This recommendation 

can be applied generally to any category analysis in which usage data simply does not 

exist. The important takeaway for policy and decision makers is to think systematically 

about what is actually required to estimate a desired parameter and adjust the data 

collection scheme appropriately. While terabytes of data may seem impressive at first 
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sight, a lower amount of quality data that is directly applicable to the analysis being 

conducted will be much more productive than large amount of irrelevant data (Larose & 

Larose, 2015). 

The concept of quality over quantity data is a crucial one that has yet to be fully 

implemented across the USAF although the recognition of this concept is taking hold at 

the higher levels of leadership (Crider, 2018). Data quality can be thought of as the 

degree to which data is fit for the desired purpose using accuracy, completeness, 

consistency, currency, and uniqueness (Loshin, 2014). While a full survey of USAF data 

collection is beyond the scope of this research, the likely hindrance to the implementing 

a focus on quality data collection in the USAF is threefold: (1) a lack of dedicated data 

scientists spread throughout the department; (2) corporate inertia that resists changing 

data collection schemes at tactical levels due a lack of manpower to focus on data 

(possible connection to the lack of data scientists), a lack of direction on how to change, 

a “this is how we have always operated” mindset, or some combination of all three; and 

3) the incredible diversity present in USAF organizations and databases, even those 

within the same career field, that makes codifying and centralizing standard quality data 

collection daunting (Mikalef et al., 2018). Despite these challenges, the USAF must push 

forward with proactive, relevant data collection schemes that can be used to 

appropriately analyze problems. Additionally, the USAF must maintain a flexible quickly 

adaptable strategy that can shift to reflect changing data requirements while 

maintaining the consistency and quality of large datasets. A lack of knowledgeable data 

science professionals and well thought out direction will likely make any 
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implementation, especially large-scale changes, almost impossible to succeed. While 

quality data is listed second in the recommendation list (behind collecting targeted data 

where none currently exists), the concept of collecting data for a specific purpose 

should be considered as a requirement across all recommendations. For a concrete 

example of the limits low data quality places on analysis, one can look at BUILDER 

component replacement value (CRV) data used in this research. While CRV was the most 

comprehensive empirical data used, the data still contained CRV values that were 

unrealistic based on the other specifications from BUILDER and industry cost estimation 

data (Abate et al., 2009; Enersion, 2017; FPL, 2012b, 2012a). This lead to a lower level of 

confidence in the data in addition to the removal of those records, diminishing the 

statistical power of the analysis provided due to less data records (Cohen, 1992).  

The implementation of the TRIRIGA integrated work management system is one 

bright spot in the infrastructure-related USAF data portfolio – developed as a financial 

audit readiness tool, TRIRIGA has already improved how the USAF tracks maintenance 

and repair data; time is the only thing required to build the size of that dataset. 

Examining the TRIRIGA software does, however, emphasize the importance of 

communication between databases. Disjointed databases that cannot “talk” required 

laborious, time-intensive efforts to create cohesive datasets. Joining datasets across 

platforms may not even be possible if export formats are different (generally not a 

problem given the prevalence of Microsoft Excel) or there are no common identifiers 

within data records that allow combination. The majority of analysis time for this 

research was spent pouring through thousands of records from BUILDER and TRIRIGA to 
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removed unnecessary data and find common data identifiers that would allow for 

combination. Even once the best common link between the two datasets was identified, 

the matches were not perfect and combining of records was done using the judgement 

on whether equipment names were close enough to warrant a match. Those records 

without a match were removed, once again revising the issue of decreased data 

confidence and power of analysis. In an organization already constrained by limited 

manpower and data science expertise, issues like communication between datasets can 

make a significant difference; time not spent processing data to make it usable can be 

spent on meaningful analysis.  

Additional Cost Factor Estimation 

While the TCO model presented here provides an output based on the three 

largest cost over the service life of a chiller, there are other costs associated with the 

TCO of chiller equipment. The work done within the USAF on chiller TCO analysis 

(Brannon et al., 2018) provides the rationale for including training costs, inventory parts 

and storage, cost of acquisition (actions taken before initial purchase), the cost to 

secure systems from cyber-attacks, and the cost of system downtime. The foundational 

concept of TCO analysis is that every cost within the defined boundary should be 

included; therefore, there is no question as to the validity of accounting for these costs. 

Additionally, excluding certain can introduce omitted variable bias to the model – a 

phenomenon where the model may attribute the effect of the missing variables to the 

estimated effects of the included variables. The logic for excluding them from this 

analysis stems from (1) the complete lack of empirical and theoretical data for these 
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costs and (2) the omission of these costs in the current body of HVAC cost literature and 

industry guidelines (Abate et al., 2009; Crevat, 2017; Naguib, 2009; Trane, 2010).  

While the lack of available data for the additional chiller TCO costs is not an 

excuse for not making an attempt at estimation, the lack of data coupled with the 

relatively low proportion of total cost makes it a reasonable omission. This research 

aimed to create a fieldable chiller TCO model that would provide decision makers 

involved with choosing chiller equipment a tool for validating acquisition decisions. As 

such, in order to provide a practical model that balanced theoretical estimation with 

empirical data, the model focused on what academic literature and industry standards 

used consistently as the bulk of TCO analysis (Carr & Ittner, 1992; Naguib, 2009; Trane, 

2007, 2010). While the exact remaining proportion of TCO not accounted for by the 

three main costs is not quantifiable as result of this research, the omission of these 

additional costs from all literature on the topic indicates an insignificant portion of the 

TCO is represented by the additional costs. The approach taken in this research was to 

develop a model that could be fielded in a usable fashion and the inclusion of the more 

minor costs, while increasing the accuracy of the model, would have had limited value 

added and dubious accuracy given the lack of data available. Despite their omission, 

estimating and examining the costs not included would provide for meaningful future 

work which may determine that the omitted costs are not as minor as previously 

assumed, especially from an alternative analysis perspective. Training and supply, 

specifically, provide a potentially crucial vein of future research that could allow for 

significant cost savings given certain assumptions are met. 
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Training, Supply, and Standardization 

The USAF Civil Engineer career field is unique from many other infrastructure-

centric career fields in the U.S. because (1) there is a combat focus and mission set 

unique to the U.S. military and (2) roughly 60% of the personnel in the career field 

turnover consistently due to assignment changes. Focusing on the turnover of personnel 

and the diminished continuity created by such provides an avenue for TCO research on 

effect of asset standardization that may affect the cost of training and equipping 

personnel. When personnel move to different bases, they are often faced with 

completely different mission sets, job requirements, and circumstances (climate, 

funding, deployments, family separation, and organization structure to name a few). 

From a chiller equipment perspective, the personnel required to maintain and repair 

these assets may leave a base where one type or manufacturer of chiller is preferred to 

another base that is completely different. This turnover of personnel to new assignment 

creates a constant stream of new training requirements to create personal capable of 

maintaining the new types of equipment they may encounter. Even when not 

accounting for personnel moves, the USAF estimates that for each different 

manufacturer of chiller equipment present on a base, training requirements increase by 

65% (Brannon et al., 2018). Additionally, the inventory of general HVAC equipment in 

the USAF has gotten so diverse that the technical education given new HVAC technicians 

is focused on general troubleshooting and minor repair with the assumption that 

manufacturer reps or contractors will be required for more advanced work (Brannon et 

al., 2018). This approach results in a system where the USAF pays for work twice: once 
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when USAF personnel perform initial troubleshooting and again when a third party 

examines the issue. Training is not the only elevated cost associated with a diverse 

equipment portfolio. The large bench stock required to deal with a vast array of systems 

requires more active inventory management, cost, and storage. Reduced 

interchangeability, a key facet of minimizing costs in facility management (Dhillon, 

2002), also results from small differences amongst manufacturers prohibiting part 

swapping. 

For TCO analysis, one can easily see where accounting for the additional costs 

created by diverse equipment portfolios is of interest. The analysis becomes even more 

interesting if the market for general HVAC and chiller specific equipment is consider 

competitively efficient (SBA, 2014). The idea that the market for chiller equipment 

compete efficiently while being subject to the same constraints (technology, regulation, 

demand, production capability, material availability, management quality, and market 

conditions) provides a baseline where one can assume that the initial costs, reliability 

(i.e. maintenance and repair costs), and operation (energy) of an equivalent size and 

type of chiller from any major manufacturer will be comparable within a negligible 

margin of difference. If the assumption were violated, a manufacturer would lose 

market share until the assumption held true again or until said manufacturer ceased 

doing business. This approach is important for analyzing how the USAF could save 

potentially large sums money through equipment standardization. If chiller equipment 

performance is considered practically equal due to competitive efficiency then initial, 

maintenance plus repair, and energy costs can be assumed equal while training and 
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supply costs take the focus of cost analysis. This line of thinking opens the door to 

options for measuring bench stock acquisition and storage costs as well as personnel 

productivity at installations with relatively standardized vs non-standardized equipment 

(assuming the differentiation exists). A standardization strain of research is especially 

interesting given the relatively even cost proportions of initial purchase, maintenance 

plus repair, and energy costs (Naguib, 2009). 

Conclusion 

The research presented here focused on developing a TCO model for predicting 

chiller equipment cost for the USAF under the umbrellas of federal category 

management. Knowing the TCO of any asset is a foundational requirement for 

understanding how much is spent and where the spending is inefficient. The new 

research developments of this study are a practical, fieldable model to provide a chiller 

TCO approximation that provides a first step toward implementing category 

management for the acquisition of USAF chiller assets. Developing a model based on 

existing research that is validated by a mix of empirical and theoretical data sources 

provides a novel result currently not present in the existing body of literature on general 

and chiller specific TCO. The study provides a detailed methodology for improved 

estimating additional costs as data becomes available. While sufficient empirical data 

was not present to perform full case study analysis, the recommendations provided as a 

result of this research, if adopted, will create a clear path to developing the predictive 

power of the base model significantly in future iterations. Additionally, a clear depiction 
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of the assumptions and constraints provides those who use the model a full 

understanding of the lenses through which the output should be viewed. The model 

should prove useful for those attempting to justify non-LPTA acquisition methods and 

allowing for design options that may not have been previously considered. Additionally, 

this TCO model required substantially less manpower to reach an output cost, which will 

lead to saved money on both the analysis and equipment acquisition fronts. Finally, 

recommendations and additional streams of research that will serve to improve the TCO 

model are identified for consideration by policy makers at all levels. 
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V.  Conclusions and Recommendations 

Chapter Overview 

The linear regression model developed in this research provided a new total cost 

of ownership (TCO) estimation tool for chiller equipment with potential utility for 

making acquisition decisions and analyzing equipment alternatives. This chapter 

outlines these results and their implications. The first section of the chapter provides a 

summary of the research conclusions. Next, the chapter covers limitations of the 

research followed by the significance of the research. Finally, the chapter discusses 

recommendations for future research to continue and expand the work presented in 

this paper.  

Conclusions of Research  

This study provided some useful insights into the concepts and application of 

TCO estimation modeling. Once a descriptive TCO model was built, the graphical and 

single regression analysis of individual cost factors provided confirmation of the trends 

across the data. Single regression results were validated when multiple regression 

determined a lack significance of additional variables, effectively allowing for using 

individual cost factors to validate the overall TCO model. Additionally, the model 

provides an estimate of TCO using information that is readily available at the beginning 

of the equipment acquisition process. These attributes provide significant benefits over 

existing chiller TCO estimation models. The TCO model developed by this research 

provides an easy to use, transparent, and non-proprietary tool based on theory but 
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validated with empirical data. Additionally, the model can be fielded with minimal man-

hours and additional cost variables can be taken into account following the model 

development steps outlined. 

With a larger/more complete dataset, the model’s accuracy could improve 

substantially. Specifically, robust empirical datasets would provide a better means of 

validating the model holistically instead of validation based on individual cost factors.   

Limitations of Research 

The key limitations of this research centered on a lack of data. The model was 

able to produce significant results; however, additional data could have improved the 

validation techniques and allowed for more advanced cost simulation techniques that 

account for uncertainty and provide TCO ranges based on a desired level of statistical 

confidence. Moreover, additional data may have identified additional significant 

characteristics of chiller equipment that have a significant effect on TCO.  

Significance of Research  

There are two significant ramifications from this research. First, this model 

provided a methodology to create a viable tool in early cost estimation efforts. The 

process for model development provided here provide users with a lack of quality data a 

means of estimating TCO. The model developed here may provide a comparison 

estimate or an alternative means for improving preliminary chiller equipment cost 

estimation. Additionally, the process provided here can be applied to large, high-quality 

datasets as well with better results. Second, this research provided an analysis of the 
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work needed to estimate costs more accurately and provides a map for policymakers 

who want to make serious changes in how the USAF tracks and manages costs under the 

umbrella of category management.  

Recommendations for Future Research 

Future research could build upon this study in several ways. First, a future 

researcher could expand the model, validating and refining the results to include 

additional cost variables and equipment types. In particular, expanding the amount of 

empirical data available for model validation would provide a better level of accuracy 

and applicability. Follow-on research cold focus on identifying additional cost factors 

significant to TCO. Specifically, the effects of equipment standardization on TCO is of 

interest given the wide variety of chiller types, sizes, and manufacturers present across 

the USAF inventory. Using other, comparable organizations such as airports or university 

campuses to provide data for TCO analysis may provide yet another layer of validation 

and insight into TCO of chiller equipment.  

Summary 

This research succeeded in developing a TCO estimation for chiller equipment. 

The model, while constrained by data quality and quantity, produced results useful for 

the cost estimation process with implications for improving current estimation 

practices. This method also provided a process for developing TCO models while 

providing tangible insights and recommendations for improving the accuracy and 

usefulness of the model. Overall, these insights into USAF chiller equipment costs and 
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the subsequent model expand the foundation for future research and TCO 

development. Building on these methods, the USAF can produce increasingly accurate 

estimates with better clarity of the inherent risks and cost probabilities. 
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